40

15

12

10

15

- 254 -

15 9
15 12
16
16 2
12 40
Glueck
/70
3
/0
R. Glueck

R. Potter

15 12

(e}

- 255 -

12

Java Net

R. Potter Lisp Linux

SBDebug SBUML

Linux

SBUML

13 4

13 3

- 256 -

12 5 17
47 40 87
2 3 5
61 48 109
()
0 0 0
()
ICFP2002 2002 10
2001 3
2002 4

- 257 -

15

170

40

Robert

Glueck 31
43
32

Richard L. Potter

20

- 258 -

@
@

(1)
@

Well-Quasi-Order

Kruskal

NS

- 259 -

@)
@

Kruskal

1 van der Meyden
1993

Higman
well-quasi-order (WQO)
WQO
D, » Dy D

A<B<C B<C<A C<A<B

{A<B<C}, {B<C<A}, {C<A<B}, {A<B, B<C, C<A},

{A<B<A, B<C}, {B<C<B, C<A}, {C<A<C, A<B}, {A<C<A, B<C]}, {B<A<B, C<A}, {C<B<C, A<B},

{A<B<A<B, C}, {B<C<B<C, A}, {C<A<C<A, B}, {B<A<B<A, C}, {C<B<C<B, A}, {A<C<A<C, B}.

Higman

2001 TACSO01
(fold/unfold

- 260 -

Java Jimple 3
500
Javal3l javamath.* 30Kbytes
10
Thorup ATT Labs 1998
GOTO-free C 6 Java 3
80 Courcelle Arnborg Borie
()
k
SPy
SP, =e(i)) 1 K|S SPy ...SP, | p« SPy SP,
k=2
Program CFG SP-term
s 9) 6N :
| — -/ i \(l.\ 10)
1,2)7 %
1: input n; \/JQE a, egl-)sj\r' (2,10)
| B f e +) . 1
3: $:=0; 2 (2,3)€ - (3_' 0
{1 i c:=True, .\?) (3,4) et (S)(4,10)
s ;uohzle c -. _55}._\ (4,5) ot Iﬁ(?, 10)
6: i:=i+1; ®) |:> (5,10)eT (8)(5,10)
7: c:.:= False; } Tt (P (6,10)
' 5,6) L. 215,
8: S:=S+i; ~@ G8 |
9: ci=i<=n; r’l (5,6)et \2:3{5,6)
__ od; J ;]8) = (5,7)/(S e~ (7,6)
10 : output S \\\@_/ 65 8)'{ e— (8,7)
10 (5,9)e” e (9,8)

- 261 -

1970

4)

Ken Mano, Mizuhito Ogawa. Unique Normal Form Property of Compatible Term Rewriting Systems

- A New Proof of Chew's Theorem -, Theoretical Computer Science, 258 (1-2), pp.169-208, 2001.

Zurab Khasidashvili, Mizuhito Ogawa, Vincent van Oostrom. Perpetuality and Uniform Normalization

in Orthogonal Rewrite Systems. Information and Computation, 164 (1), pp.118-151, 2001.

Mizuhito Ogawa. A Linear Time Algorithm for Monadic Querying of Indefinite Data over Linearly

Ordered Domains. Information and Computation, 186(2), pp.236-259, 2003, Fourth International

Symposium on Theoretical Aspects of Computer Science special issue.

Mizuhito Ogawa. Well-Quasi-Orders and Regular w -languages. Theoretical Computer Science
Third International Colloguium on Words, Languages and Combinatorics special issue.

- 262 -

18 (2), pp.59-63, 2001.
18 (5), pp.1-17, 2001.
Isao Sasano, Zhenjiang Hu, Masato Takeichi, Mizuhito Ogawa. Derivation of Linear Algorithm for
Mining Optimized Gain Association Rules. 19 (4), pp.39-44, 2002.

44 (SIG13/PRO18), pp.25-37, 2003.

5
Zurab Khasidashvili Mizuhito Ogawa, Vincent van Oostrom. Uniform Normalization beyond
Orthogonality. Proceedings of the 12th International Conference on Rewriting Techniques and
Applications (RTAO1), Lecture Notes in Computer Science 2051, pp.122-136, May 2001,
Springer -Verlag.
Mizuhito Ogawa. Generation of a Linear Time Query Processing Algorithm Based on
Well-Quasi-Orders. Proceedings of the Fourth International Symposium on Theoretical Aspects
of Computer Software (TACS2001), Lecture Notes in Computer Science 2215, pp.283-297,
October 2001, Springer-Verlag.
Mizuhito Ogawa. Call-by-Need Reductions for Membership Conditional Term Rewriting Systems.
The 3rd International Workshop on Rewriting Strategies in Rewriting and Programming (WRS03),
June 2003, Electronic Notes in Theoretical Computer Science 86(4), Elsevier
(http.//www.elsevier.nl/gej-ng/31/29/23/135/49/show/Products/notes/index.htt).
Mizuhito Ogawa, Zhenjiang Hu, Isao Sasano. Iterative-Free Program Analysis, Proceedings of the
8th ACM SIGPLAN International Conference on Functional Programming (ICFP03), pp.111-123,
August 2003, ACM Press.
Mizuhito Ogawa. Complete Axiomatization for an Algebraic Construction of Graphs. The Seventh
International Symposium on Functional and Logic Programming (FLOPS04) Lecture Notes in
Computer Science, Springer-Verlag

2002.4.8

- 263 -

170

CDN
DoS
170
I/0
Unix
select() poll()

170

CDN (Contents Delivery Network)

2
7{e]
2
Web HTTP/1.1
170
170
select() poll()
I/0
I/0
170 CPU
select() poll()

- 264 -

ISP

170

100%

PC

7{e]

170

5%

Chamomile Web Accelerator

SMP

- 265 -

SMT

/0
CPU
I/0
Chamomile Web Accelerator ISP
1. NETWORLD + INTERNET Tokyo
2001 2001 6
2 NETWORLD + INTERNET

(N+l) Tokyo 2003 2003 6

LEiji Kawai, Youki Kadobayashi, and Suguru Yamaguchi. Alleviation of Processor Usage on
Heavily-Loaded Network Servers with POSIX Real-time Scheduling Control. (Submitted to IEICE
Transactions)

2. I/0
, , Vol45,No.2, 2004 2

3.
, , Vol45, No. SIG1 (ACS4), 2004 1
4, WWW IPv6
, ,Vol.44, No.3,2003 3
5.
WWW , , Vol43, No.11, pp.3439-3447, 2002
11

L Eiji Kawai, Youki Kadobayashi, and Suguru Yamaguchi. Improving Scalability of Processor Utilization on
Heavily-Loaded Servers with Real-Time Scheduling. International Conference on Parallel and

- 266 -

Distributed Computing and Networks (PDCN 2004), Innsbruck, Austria, February, 2004.
2.Eiji Kawai, Youki Kadobayashi, and Suguru Yamaguchi. Efficient Network 1/0 Polling with Fine-Grained
Interval Control. International Conference on Communication, Internet, and Information Technology

(CHIT 2003), Scottsdale, AZ, USA, November, 2003.

3.Eiji Kawai, Akira Shirahase, Kiyoshi Tsukada, and Suguru Yamaguchi. Practical Migration Strategy to
IPv6 for Enterprise Web Services. The 11th International World Wide Web Conference, May, 2002,

IA 2003 5
2. 170
2003 5

3. 170
SPA2003 2003 3

4. Www IPv6
2002 3

- 267 -

Robert GLUECK

The research explored new frontiers of automated software production. The goal is to build programs
that build program. The scientific approach taken in this project is unique in that | investigate a
combination of three fundamental principles: (1) three basic transformation operations on programs
(program composition, program inversion, and program specialization), (2) multiple layers of these
transformations, and (3) their portability to new languages via interpreters. | study these principles using
semantically clean functional languages.

Our goal is to explore the frontiers of automatic software production based on a combination of three
fundamental insights.

(1) Three operations. Our thesis, based on a structural analysis of formal linguistic modeling as
explained in our earlier publication [13], is that three fundamental operations are needed: program
composition, program inversion, and program specialization. We found that these operations have to
be performed efficiently and effectively by tools for software production to be truly powerful. Of
these, program specialization, also known as partial evaluation, has been studied intensely and is the
best understood method.

(2) Layers of metasystems solve a wide spectrum of transformation problems using only the three
types of operations listed in (1). A cornerstone in this development are the Futamura projections
which make use of two metasystem layers of program specialization. We examined novel
meta-system structures including the specializer projections, multi-level generating extensions and
a new metasystem scheme for program composition and program inversion (cf. [2, 7, 12]).

P y p y
invint X invtrans p-! X
(1) Inverse interpreter (2) Inverse translator

Figure 1: Two tools for solving inversion problems (where [[p]] X =)

3. New programming languages for the construction software will continue to emerge rapidly as

- 268 -

information technology evolves (cf. the recent phenomenal success of Java). There is no evidence
that any particular programming language will be the last in this series. Solutions for (1) and (2) must
be able to accommodate languages as they are needed to be truly successful. Semantics modifiers,
a novel concept for robust semantics [2], promise language independence for composition, inversion,
and specialization.

We have identified these three principles as important through our research. Existing approaches to
automatic program transformation have only considered part of the operations in (1) or used only
restricted forms of metasystem schemes (2). Semantics modifiers (3) are original and, thus, have not
been investigated before.

Our research goal was to advance the theory and methods for automatic program transformation
based on the principles identified above, and to study the computational feasibility of our scientific ideas
for theoretically clean, functional languages. We approached these scientific questions partly by
theoretical means and partly by experimental work. What follows is a technical overview. References to
publications are provided for more detailed information.

A. Inversion of functions is a fundamental concept in mathematics, but the inversion of programs
has received little attention in software science (with the exception of logic programming). Programs
that are inverse to each are often used. Perhaps the most common example are programs for
compressing and decompressing files sent via networks. Today, programs for both transformations need
to be written manually, but this is rot necessary. One program should be sufficient, and then have a
program inverter derive the other program automatically.

Inversion problems can be solved in two ways, either by an inverse interpreter or by a program
inverter. Both software tools are illustrated in Fig. 1. We studied both approaches for first-order
functional languages. A difficulty for program inversion is that traditional programming languages do not
support computation in both directions and that there is little known about the automatic generation of
inverse programs. Logic programming is suited to find multiple solutions and can be regarded as a
method for inverse interpretation, but only for relational programs. A detailed description of these
notions can be found in our publications [1, 2, 3].

We studied the Universal Resolving Algorithm (URA), a powerful method for inverse computation for
first-order functional programs. The algorithm was implemented in Scheme for a typed dialect of
S-Graph, and shows some interesting results for the inverse computation [2, 3]. The algorithm is
powerful enough to deal with multiple solutions. We also showed that the algorithm is sound and
complete, and computes each solution in finite time [4]. Due to the interpretive nature of the algorithm,
inverse computation by URA is slower than using an inverse program.

We analyzed the Korf-Eppstein method (short, KEinv) for automatic program inversion of first-order
functional programs [10] and formalized the transformation using a structural operational semantics. It
is one of only two existing general-purpose automatic program inverters that were ever built. This was
the basis for studying the generation of inverse programs.

Recently we proposed [11] a method for automatic program inversion in a first-order functional

- 269 -

programming language that achieves transformations beyond KEinv. One of our key observations is that
the duplication of values and testing their equality are two sides of the same coin in program inversion.
This led to the design of a new slf-inverse primitive function that considerably eases the inversion of
programs. We illustrated the method with several examples including the automatic derivation of a
program for run-length decoding from a program for run-length encoding. This derivation is not possible
with other methods, such as KEinv. Another example, more theoretical in nature, is the inversion of a
program fib that computes pairs of neighboring Fibonacci numbers; for instance, fib(2)=<2 3>. The
automatic inversion is successful and produces an inverse program fib™%;, for instance, fib(<34, 55>)=8.

B. Composition The construction of complex software by sharing and combining components in
order to ease software construction is the main focus of many recent approaches. But abstraction
layers do not come for free: they add redundant computations, intermediate data structures, extra
run-time error checking. Program composition is a program optimization that can remove such
redundancies, and allows the composition of software parts without paying an unacceptably high price in
terms of efficiency.

We examines the problem to transform functional programs, which intensively use append functions
into programs, which use accumulating parameters instead (like efficient list reversal) [14]. We studied
an (automatic) transformation algorithm for our problem and identify a class of functional programs,
namely restricted 2-modular tree transducers, to which it can be applied [15]. We showed how
intermediate lists built by a selected class of functional programs, namely “accumulating maps”, can be
deforested using a single composition rule. For this we introduced a new function * dmap’ , a symmetric
extension of the familiar function ‘ map’. While the associated composition rule cannot capture all
deforestation problems, it can handle accumulator fusion of functions defined in terms of * dmap’ in a
surprisingly simple way. For this research direction we conclude, that automatic, non-trivial composition
remains a challenging research problem for the future. Possibly, program composition the most difficult
of the three operations to achieve in an automatic and general fashion.

C. Semantics modifiers A key ingredient of our approach are semantics modifiers because they

allows the design of general and reusable program transformers which make use of results of task A
and B, in principle, portable to other programming language.

- 270 -

intTM invintTM
intLAM . invintLAM
specialize
invmodTSG intFLC - invintFCL
_semantic modifie_r : intJBC invintJBC
inversion semantics
forP
intTSG invintTSG
standard semantics inversion semantics
forQinP forQ

Figure 2: Semantics modifier + standard semantics = hon-standard semantics.

We developed a mathematical theory for non-standard semantics and examined the meaning of
several non-standard interpreter towers [1]. Our results suggest a technique for the implementation of
a certain class of programming language dialects by composing a hierarchy of non-standard interpreters.
Based on this theory, we experimented [12] with the Universal Resolving Algorithm (see A above) to
prototype programming language tools from robust semantics: we used automatic program
specialization to turn interpreters into inverse interpreters for several small languages for which no
hand-written tools exist (including interpreters for an applied lambda calculus, an imperative flowchart
language, and a subset of Java bytecode). This is illustrated in Fig. 2.

This application of self-applicable program specializers is remarkable since it suggest a new use of
program specialization that is different from the familiar Futamura projections. Also, we studied powerful
specialization methods [6], loop peeling to increase the accuracy of program analysis [16] and edited a
special issue on program transformation and partial evaluation [9].

For our experiments we needed to analyze the power of program specialization and have done so
for online and offline partial evaluation [5], for the Futamura projections [8] and binding-time
improvements [7].

Despite practical successes with the Futamura projections, it has been an open question whether
target programs produced by specializing interpreters can always be as efficient as those produced by a
translator. We showed that, given a Jones-optimal program specializer with static expression reduction,
there exists for every translator an interpreter which, when specialized, can produce target programs
that are at least as fast as those produced by the translator. We call this class translation universal
specializers. We also showed that a specializer that is not Jones-optimal is not translation universal. In
a second step we examined Ershov’ s generating extensions and introduced the class of generation
universal specializers. We answered these questions on an abstract level, independently of any
particular program specializer. We were interested in statements that are valid for all specializers, and
have identified such conditions.

In another study about the strength of program specializers, we showed that the accuracy of online

- 271 -

partial evaluation, or polyvariant specialization based on constant propagation, can be simulated by
offline partial evaluation using a maximally polyvariant binding-time analysis [5]. We showed [7] that
Jones optimality, which was originally aimed at the Futamura projections, plays an important role in
binding-time improvements. The main results show that, regardless of the binding-time improvements
which we apply to a source program, no matter how extensively, a specializer that is not Jones-optimal
is strictly weaker than a specializer which is Jones optimal.

Our research centered around three important principles (three program operations, metasystem
layers, adaptability). In particular, we examined inverse computation theoretically and experimentally, and
adapted an algorithm to several programming Bnguage subsets by automatic program specialization,
including a small subset of Java Bytecode. We characterized the accuracy of online and offline
specialization [5] and identified the conditions for strong binding-time improvements [7] and the
translation universality [8] of Futamura projections. We proposed an automatic method for program
inversion that is stronger in some important aspects than other inversion methods and shows some
remarkable results. [10]. For program composition, attribute grammars are promising and we have done
steps in this direction [14,15], but conclude that the fundamental problem of accumulator fusion
remains a challenging research task for future work.

We found that there is no theoretical limit to the translation power of the Futamura projections
provided a specializer with static expression reduction is also Jones-optimal and introduced the class
of translation universal specializers. We believe that the power to perform universal computations is
another property for the theoretical power of a program specializer. Whether the results can be adapted
to other non-standard interpreter hierarchies as developed in [1] is a topic for future work. It is quite
possible that the results [7,8] can be carried to the next metasystem level. We also want to explore the
conditions for generating translators and other program generatorsfrom generation universal
specializers.

Our experiments applied the idea of prototyping programming language tools from robust semantics
[12]: we produced automatically inverse interpreters for programming languages for which no inverse
interpreter existed before. Even though these languages are small, the results demonstrate that it is
possible in practice with existing partial evaluators. To the best of our knowledge, these are the first
results regarding this use of partial evaluation. Our results show that a speedup of an order of
magnitude can be achieved for some interpreters. Limiting factors of offline partial evaluation was the
need for binding-time improvements and the lack of generalization.We believe there is still more to be
gained by partial evaluation and want to investigate stronger specialization techniques, such as [6].

A main difficulty in the generation of inverse programs are conditionals and recursive functions. We
now try to solve some of these difficulties through the application of parsing techniques to program
inversion. Tasks for future work also include the refinement of the well-formedness criteria [10]. We
have not exploited mathematical properties of operators during the inversion. A possible extension of
our techniques may involve the use of constraint systems for which well-established theories have
been developed in other areas.

- 272 -

We described an algorithm for inverse computation, tudied its organization and structure, and
illustrated our implementation with several examples [3,12]. Methods for detecting finite solution sets
and cutting infinite branches can make the process of inverse computation terminate more often (while
preserving soundness and completeness) and may make the method more practical. Techniques from
program transformation and logic programming may prove to be useful in this context, and we are now
taking first steps into this direction. We also want to explore further its portability to new languages via
semantics modifies [1,2].

Glueck

Glueck

References (international) :

1. S. M. Abramov and R. Gluck. Combining semantics with non-standard interpreter hierarchies. In S.
Kapoor and S. Prasad, editors, Foundations of Software Technology and Theoretical Computer
Science. Proceedings, Lecture Notes in Computer Science, Vol. 1974, pages 201?213
Springer-Verlag, 2000.

2. S. M. Abramov and R. Gluck. From standard to non-standard semantics by semantics modifiers.
International Journal of Foundations of Computer Science, 12(2):1717211, 2001.

3. S. M. Abramov and R. Gluck. Principles of inverse computation and the universal resolving
algorithm. In T. A. Mogensen, D. Schmidt, and I. H. Sudborough, editors, The Essence of
Computation: Complexity, Analysis, Transformation, Lecture Notes in Computer Science, Vol. 2566,
pages 2697 295. Springer-Verlag, 2002.

4. S. M. Abramov and R. Gluck.The universal resolving algorithm and its correctness: inverse
computation in a functional language. Science of Computer Programming, 43(2-3):193?229,
2002.

5. N. H. Christensen and R. Gluck. Offline partial evaluation can be as accurate as online partial
evaluation. ACM TOPLAS to appear, 2003.

6. Y. Futamura, Z. Konishi, and R. Gluck. WSDFU: Program transformation system based on
generalized partial computation. In T. Mogensen, D. Schmidt, and 1. H. Sudborough, editors, The
Essence of Computation: Complexity, Analysis, Transformation, volume 2566 of Lecture Notes in
Computer Science, pages 358?378. Springer-Verlag, 2002,

7. R. Gluck. Jones optimality, binding-time improvements, and the strength of program specializers In
Proceedings of the Asian Symposium on Partial Evaluation and Semantics-Based Program

- 273 -

10.

11

13.

14.

15.

16.

Manipulation, pages 9719. ACM Press, 2002.

R. Gluck. The translation power of the Futamura projections. In M. Broy and A. V. Zamulin, editors,
Perspectives of System Informatics. Proceedings, volume 2890 of Lecture Notes in Computer
Science, pages 133-147. Springer-Verlag, 2003.

R. Gluck and Y. Futamura. Special issue on partial evaluation and program transformation. New
Generation Computing, 20(1):1?124, 2002.

R. Gluck and M. Kawabe. An automatic program inverter for Lisp: potential and limitations. In Y. Fu
and Z. Hu, editors, Proceedings of the Third Asian Workshop on Programming Languages and
Systems, pages 2307245. Shanghai Jiao Tong University, 2002.

R. Gluck and M. Kawabe. A program inverter for a functional language with equality and
constructors. In A. Qnori, editor, Asian Symposium on Programming Languages and Systems.
Proceedings, volume 2895 of Lecture Notes in Computer Science, pages 246-264. Springer-Verlag,
2003.

R. Gluck, Y. Kawada, and T. Hashimoto. Transforming interpreters into inverse interpreters by
partial evaluation. In Proceedings of the ACM SIGPLAN Workshop on Partial Evaluation and
Semantics-Based Program Manipulation, pages 10?19. ACM Press, 2003.

R. Gluck and A. V. Klimov. Metacomputation as a tool for formal linguistic modeling. In R. Trappl,
editor, Cybernetics and Systems ’ 94, volume 2, pages 1563?1570. World Scientific, 1994.

K. Kakehi, R. Gluck. and Y. Futamura. On deforesting parameters of accumulating maps. In A
Pettorossi, editor, Logic Based Program Synthesis and Transformation. Proceedings, volume 2372
of Lecture Notes in Computer Science, pages 46?56. Springer-Verlag, 2002.

A. Kuhnemann, R. Gluck. and K. Kakehi. Relating accumulative and non-accumulative functional
programs. In A. Middeldorp, editor, Rewriting Techniques and Applications. Proceedings, Lecture
Notes in Computer Science, Vol. 2051, pages 154?168. Springer-Verlag, 2001.

L. Song, R. Gluck and Y. Futamura. Loop peeling based on quasi-invariance/ induction variables.
Wuhan University Journal of Natural Sciences, 6(1-2):362?367, 2001.

- 274 -

Java C++ GUI

CPS
(code segment)
code segment code segment (continuation)
goto (parameterized goto statement) code segment
CbC (Continuation based C)
C-- ChC
code segment interface interface

- 275 -

Input
Interface

ChC

code fact(int n,int result,
code (*print)()X
if(n>0){
result *= n;
n--,

Qutput
Interface

Output
Interface

Output
Interface

Code Segment

Code Segment

goto fact(n,result,print);

} else

goto (*print)(result);

goto fact(n,result,print);

interface
ChC C
ChC
ChC
CPU
C
j = g(i+3),

goto (*print)(result);

code interface goto jump
C
CwC (C with Continuation) CcwC ChC
CbC interface
ChC
ChC

- 276 -

C struct f g0 save

struct f g0 interface *c =
(struct f g0 save *)(sp -=
sizeof(struct f g0 save));
c = sp,
c->ret =fgl;
goto g(i+3,sp);

fgl
code g(int istack sp) {
goto (* ((struct
f g0 save *)sp)->ret)
(i+4,sp);

assert CbC interface

ChC

- 277 -

O(p-
ChC

q)

BDD(Ordered Binary Decision Diagram
) BDD

BDD BDD

server

shterm

state

RPC worker

ERCEPTTS

) A AP
£

PC
PC
MPI
ChC, CwC
Continuation based C C with Continuation cwC IA32
PowerPC

- 278 -

call
C
gcc
$10N7$
int kj;
k = 3+
j = g0(i+3);
return k+44j;
}
go(int i) { return hO(i+4)+i; }
hO(int i) { return i+4; }
cwC C ChC Pentium I
12.5% PowerPC 42.9%
50% gcc
gcc -06 CwC
PowerPC gcc hO(i)
Suci Library
PC Suci Unix
TCP
TCP MPI MPICH
Throughput of Broadcast Transfet
B t+as T
Suci (Srodes) —e—
Suci (d8nodesy —+—
MPICH (Shodesr —a—
MPICH d4@nodesy ——0
Se+@6 |-
_ det+@6 |- -
% Se+ds |-
= Ze+@d |-
let+@s |-
a
1e+E86 1e+61 1=+82 1le+@32 1e+84 1e+E5 1=+BE

Message Size [Bywtel

Suci

- 279 -

C

Prolog TL Prolog C

Suci

50 PC Dining
Philosopher (6) Unix Interleaving Dining

Philosopher 30

43 30 6
Dining Philosopher 6 Mouse Driver
ChC/CwC
ChC/CwC

- 280 -

10.

11

13.

UDP 16
September 1999
Shinji Kono Parallelization of Temporal Logic Verification by Dividing State Set 1st
International Workshop on Specification and Verification of Timed Systems March 1999

C 17
Sep 2000.

User Level Flow Control API SwoPP 2001

July 2001
C Continuation based C SwoPP 2001 July 2001
Continuation Based C PS2 Vector unit
June 2002

Continuation Based C Technology Mapping FIT 2002

Aug 2002
Suci

FIT 2002 Aug 2002

ChC gce 19
Sep 2002
19 Sep 2002
Java
May 2003
Suci API
20 Sep 2003

2003 Oct 2003

- 281 -

Java

NET (CLR)
Java
C
Java
C NET
Java
SPARC |A32
SPECCPU2000
4
N Java 2
Java primitive
C
C syntax ~ BCPL semantics
2 Solaris Windows
SPARC 1A32

- 282 -

Objective Caml 18000
GNU C Compiler MS C
2? 3

©)

Objective Caml

2000 (14000)
4 SPEC CPU2000
C
1 4
Java Net
)
1

- 283 -

Tatsurou Sekiguchi, Takahiro Sakamoto, and Akinori Yonezawa. Portable Implementation of
Continuation Operators in Imperative Languages by Exception Handling. Advances in Exception
Handling Techniques, LNCS2022, Springer Verlag, May 2001.

PDA

2001 3 Vol.19, No.1 2002 1
Takeo Imai, Tatsurou Sekiguchi, Hidehiko Masuhara, and Akinori Yonezawa Dynamic Access
Control of Mobile Objects by Switching Namespaces. OOPSLA Workshop of Patterns and
Techniques for Designing Object-Oriented Maobile Wireless Systems. October 2001.
Tatsurou Sekiguchi, Yutaka Oiwa, and Eijiro Sumii. Software. Rog-O-Matic , The 2002
International Conference of Functional Programming (ICFP’ 02) Programming Contest Playoff,
October 2002.
Yutaka Oiwa, Tatsurou Sekiguchi, Eijiro Sumii, and Akinori Yonezawa. Fail-Safe ANSI-C Compiler:
An Approach to Making C Programs Secure - Progress Report. International Symposium on
Software Security, November 2002 (ppl33-153, LNCS2609, Springer Verlag, April 2003).

PLI2002 Vol.20, No2,
pp79-84,2003 3
Java 2003 2003
8
C 6

PPL2004() 2004

- 284 -

The goal of this research is to investigate new programming tools that work by saving and restoring
intermediate computation state. The same basic idea has brought important benefits to other types of
tools and applications. Scientific and other distributed applications can benefit by saving an application
in mid-execution and moving it to a machine with more resources. Other applications gain fault
tolerance by saving application state for rolling back to a safe checkpoint in case of hardware or
software failures. However, few benefits have been explored for programming tools that can save and
restore the computation state of a program under development.

One reason to expect benefits is that quick initialization of programs in mid-execution can make it
possible to focus programming tools and programmer attention in new creative ways. People who are
learning new programming skills can benefit because it allows a wider range of techniques to be applied
to a program that has been subdivided into more manageable pieces. An additional general benefit is
that program state can be enumerated more efficiently and methodically, which enables model checking
on actual implementations. The questions for this research are what tools can make these potential
benefits practical for actual programming activity and what infrastructure will make these tools easy to
implement.

Tools based on Computation Scrapbooks have potential to be simple because it is simple and
increasingly practical to copy computation state. It is conceptually simple because, like photo copying
complex information on a sheet of paper, it is not necessary to understand the information to easily
copy it. Copying computation state is practical because hard disk sizes and processor speeds are fast
enough to copy realistic computation state quickly.

The challenge of this research is to demonstrate that Computation Scrapbooks can be both useful and
practical without adding too much complexity to the simple core functionality that copies the
computation state. Thus it is important to distinguish between the core functionality, which is well
defined and clearly practical, and the extended functionality, which may be less well defined and only be
possible for certain special cases.

The approach of the research has been to create two systems. The first system is for fast
prototyping various Computation Scrapbook based tools. It has limited core functionality, but is flexible
for exploring the various types of extended functionality necessary to support the tools. The second
system is designed for actual use by real users. It has more rigorous core functionality that is general,
however the range of extended functionality and tools is less than the first system.

The name “Computation Scrapbook” represents the core infrastructure itself, and is intended to
convey that multiple snapshots of computation state are saved and used in creative ways It
encompasses functionality to save, organize, and restore shapshots of computation state. To support
programming tools, a Computation Scrapbook must support thread persistence, because use in
programming tools requires checkpointing at a fine granularity and therefore the stack states must be
preserved. Also, multiple persistent snapshots will be required for several of the programming tools.

In this research, two different Computation Scrapbooks have been implemented using different
techniques. SBDebug, the first system implemented, captures the state of Lisp programs that run in the
Emacs text editor. It creates snapshots that are typically less than 10KB in size. t works by

- 285 -

instrumenting functions so that they make internal stack frames easy to capture in a top-down manner.
Saving and restoring state is quick and the Lisp environment makes it easy to manipulate programs and
data. Therefore, SBDebug has been useful for quickly prototyping new Computation Scrapbook tools,
although its use is limited to a restricted class of Emacs Lisp programs.

SBUML, the second system implemented, captures the state of the Linux operating system, including all
file systems, applications, processes, and kernel state. SBUML is early in development, but it will be
useful for creating tools for a wide range of programming languages and will support complex, real-world,
multithreaded programs. It works by copying the complete low-level image of all changes to memory
and disks of User-Mode Linux, a virtual version of Linux. This makes it less flexible than SBDebug for
prototyping innovative tools because the Linux state is more heterogeneous and therefore harder to
manipulate than Lisp. Also, the snhapshots require more computing resources. Raw snapshots start
at about 30MB in size, although snapshots can sometimes be compressed to around 100KB. Saving
and restoring raw snapshots takes around 5 seconds on a 2.8gHz dual processor workst ation.

Several tools based on the core Computation Scrapbook infrastructure were developed to support
various programming activities, such as reading code, writing code, debugging, and testing.

For example, when reading a program, a user can sometimes benefit by watching the program execute
using debugging or software visualization tools. However, setting up the debugger so that it shows
something useful about a particular section of code can require a lot of skill. A Computation
Scrapbook can let a skilled programmer prepare and save such a debugger configuration and share it
with other users.

This idea was explored in SBDebug by creating a snapshot documentation tool with two features. The
first feature lets the experienced programmer paste a hyperlink into source code text. The second
quickly takes anybody who selects the hyperlink back to the same debugger configuration.
Experimenting with these features has made other uses obvious. For example, hyperlinks could be put
in on-line programming language documentation to quickly take readers to live examples of specific
language features in action.

While developing a program, sometimes testing has to be delayed until a whole module is completed.
Since a snapshot can initialize any part of a larger program, arbitrarily small and partially completed
code segments can be tested earlier.

This idea was implemented in SBDebug as a snapshot test case tool To use it, the user sets up the
initial computation state for the beginning of the code segment using whatever techniques are most
convenient, which might be done by running the program manually, writing a driver, manually editing the
state, or some combination of these. This first snapshot is then saved. The user then runs the
program to the end of the code segment and saves a second snapshot, possibly editing the
computation state manually if the code does not compute the correct outcome. Finally, the user uses
the test case tool to create a test case from the two test cases just saved. A second test cas tool
feature runs the test case. It initializes the code with the first snapshot, runs until the program counter
matches that of the target snapshot, and then compares the computation state with the second
snapshot to judge if the test passed. A third €ature can run a set of test cases with a single
command.

Experience with the tool shows that it can be very easy to create a test case in the middle of writing
and debugging a program. If later the code is changed, it is easy to rerun the collected set of test
cases to quickly check for any new bugs might have been unintentionally introduced.

When writing code, it can sometimes be desirable to give a specific example of what the program does
rather than write the abstract code. Although automatic programming techniques are well researched,
they only work for very small programs of limited use. Computation Scrapbooks make it possible to
apply such techniques to small parts of larger programs, so that they can generate useful code. This
can be practical because the snapshot test cases work for code segments that are so short that all
possibilities can be enumerated.

- 286 -

This idea can be demonstrated in SBDebug with its programming by demonstration (PBD) tool The
user first selects an incomplete or incorrect Lisp expression and also selects a set of test cases. The
PBD tool can then enumerate possible expressions until one passes all test cases. In order to make
the interface this simple, some plausible defaults were chosen for how to enumerate the expressions.
For example, only functions, constants, and other tokens that already appear in the function that
contains the original expression are used.

So far this tool is only a proof of concept implementation to show automatic programming is possible
for realistic programs when a Computation Scrapbook is used to focus the technique on a small parts
of the programs. Some refinements were implemented to delay the inevitable combinatorial explosion.
In addition to static type checking, the PBD tool also keeps track of runtime errors to reduce the
number of expressions that must be generated and tested.

When verifying the correctness of concurrent programs, model checking techniques can be useful.
However, model checking must usually be performed on a separate abstraction that may not match the
actual implementation. Computation Scrapbooks can restore the state of an actual implementation
repeatedly so that all possible successor states can be generated for model checking. This idea has
been demonstrated by enumerating all the possible states of a C implementation of the Dining
Philosopher s algorithm running in SBUML.

Overall, the research proceeded steadily with progress in both implementations and high-level ideas.
At the beginning of the research period, the high-level ideas were loosely strung together notions about
end-user programming, gentle-slope systems, invisible computation state, the increasing practicality of
copying computation state, and the idea that interaction with computation state can lead to higher-level
understanding. This was enough of a framework to guide the quick implementation of SBDebug.
Experience with SBDebug resulted in a clearer understanding of the high-level benefits of Computation
Scrapbooks, which mostly come from the ability to quickly initialize programs in mid-execution. From
this core benefit, other benefits are easy to explain, including how programs in mid-execution provide
context that is useful for gentle-slope systems. Some of the refined high-level ideas were published in
a paper that explained how Snapshot Documentation is an appropriate technique for gentle-slope
systems. Experience with SBDebug also gave the confidence to start investigating the practicality of
Computation Scrapbooks for other systems.

After investigating the practicality of a Computation Scrapbook system for Java, it became apparent
that one for Linux might be easier to implement. At first it seemed that checkpointing Linux might be
slow and only good for very slow proof-of-concept demonstrations. However, SBUML has turned out
to be much faster and useful than expected. It can save and restore snapshots in a few seconds and
compress snapshots down to sizes that are practical to download quickly over the Internet.

This research provides a foundation for several useful and challenging research directions. For the
short term, most practical benefit will be using SBUML for its Snapshot Documentation potential.
SBUML is currently being distributed publicly and has great potential to be useful to researchers and
other users. For advanced computer science research, the model checking applications of SBUML
show great potential. For ground breaking research, it will be interesting to transfer the extended
functionality demonstrated in SBDebug to SBUML and show how the testing and automatic
programming tools can work for popular languages like C and Java.

- 287 -

2 Linux
SBUML

1 O. Sato, R. Potter. M. Yamamoto, and M. Hagiya, UML
, Linux Conference 2003

2 R. Potter and Y. Harada, Additional Context for Gentle-Slope Systems, IEEE Symposia on
Human-Centric Computing Languages and Environments (HCC 2003)

3 R. Potter and M. Hagiya, Computation Scrapbooks for Software Evolution, Fifth International
Workshop on Principles of Software Evolution (IWPSE 2002)

4 R. Potter, Computation Scrapbooks of Emacs Lisp Runtime State, 43

5 R. Potter, Computation Scrapbooks of Emacs Lisp Runtime State, IEEE Symposia on Human-Centric

Computing Languages and Environments (HCC 2001)

6 R. Potter, Computation Scrapbooks,

(SPA2001)

1 SBDebug: A Computation Scrapbook for Emacs Lisp. (Approximately 8500 lines of Lisp)

2 SBUML: A Computation Scrapbook for User-Mode Linux. (Approximately 5500 lines of C and 1800
lines of Shell Script)

- 288 -

