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(HU, Zhenjiang)

With the increasing popularity of parallel programming environment such as PC cluster,
more and more people, including those who have little knowledge about parallel
architectures and parallel programming, are hoping to write parallel programs to solve their
daily problems. This situation eagerly calls for models and methodologies that can assist
programming parallel computers effectively and correctly.

Data parallel model turns out to be one of the most successful ones for programming
massively parallel computers. To support parallel programming, this model basically
consists of two parts: 1 a parallel data structure to model a uniform collection of data which
can be organized in a way that each element can be manipulated in parallel; and 2 a fixed
set of parallel skeletons on the parallel data structure to abstract parallel computation
structures of interest, which can be used as building blocks to write parallel programs.
Typically, these skeletons include element-wise arithmetic and logic operations, reductions,
prescans, and data broadcasting.

This data parallel model not only provides programmers an easily understandable view of
a single execution stream of a parallel program, but also makes the parallelizing process
easier because of explicit parallelism of the skeletons. For instance, in high performance
Fortran 90/95, the parallel data structure is array and the parallel skeleton is FORALL; in
the parallel language NESL, the parallel data structure is sequence and the most important
parallel skeletons on sequences are apply-to-each and scan; and in the BMF Bird
Meertens Formalisms parallel model, the parallel data structure is typically parallel list, and
the parallel skeletons are mainly map and reduce.

Despite these promising features, the application of current data parallel programming
using skeletons suffers from several problems, which prevent it from being practically used.
Firstly, because parallel programming relies on a set of parallel primitive skeletons for
specifying parallelism, programmers often find it hard to choose proper ones and to
integrate them well in order to develop efficient parallel programs to solve their problems.
Secondly, the skeletal parallel programs are difficult to be optimized, and the major difficulty
lies in the construction of rules meeting the skeleton-closed requirement for transformation
among skeletons. Thirdly, skeletons are assumed to manipulate regular data structures. For
irregular data structures like nested lists where the sizes of inner lists are much different,
the parallel semantics of skeletons would lead to load unbalance which may cancel the
effect of parallelism in skeletons.

This project aims to solve these problems based on the theory of Constructive
Algorithmics, investigating what kinds of recursive structures are suitable for capturing
parallel computation on parallel data structures, and constructing rules for manipulating
such recursive structures.

Our main contribution is a novel framework supporting efficient parallel programming
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using skeletons. We have designed and implemented a self-optimizing C++ parallel
skeleton library, with which users, with little knowledge of parallel programming, can
program a wide class of parallel algorithms without the need to be concerned with details of
parallel architectures and data communications among processors. In addition, we have
proposed a programming methodology for systematic development of efficient skeletal
parallel programs. In the following, we shall detail three important results.

4 A Generic Parallel Skeleton for Parallel Programming

We have proposed a new powerful parallel skeleton, which can significantly ease skeletal
parallel programming, efficiently manipulate both regular and irregular data, and
systematically optimize skeletal parallel programs.

We have defined a novel parallel skeleton that cannot only efficiently describe data
dependency in a computation through an accumulating parameter, but also exhibit nice
algebraic properties for manipulation. It can be considered as a higher order list
homomorphism, which abstracts a computation requiring more than one pass and provides
a better recursive interface for parallel programming.

We have given a single but general fusion rule, based on which we construct a
framework for systematically optimizing skeletal parallel programs. Inspired by the success
of the shortcut deforestation for optimizing sequential functional programs in compilers, we
gave a specific shortcut law for fusing composition of skeletal parallel programs, but paying
much more attention to guaranteeing the skeleton-closed property. Our approach using a
single rule is in sharp contrast to the existing approaches based on a huge set of
transformation rules developed in a rather ad-hoc way. Furthermore, we proposed a
flattening rule to deal with both regular and irregular nested data structures efficiently.
Compared to the work by Blelloch where the so-called segmented scan is proposed to deal
with irregular data, our rule is more general and powerful, and can be used to
systematically handle a wider class of skeletal parallel programs.

4 A Self-Optimizing Skeleton Library

We have designed and implemented a parallel skeleton library that guarantees efficient
combinations of skeletons. Our idea was to associate each skeleton not only with an
efficient parallel implementation but also with an interface for efficient combination with
other skeletons. This interface contains information about how the skeleton consumes and
produces its data. This idea is not new in the functional community, where we have seen
the success of shortcut deforestation fusion in optimizing sequential programs in compilers.
However, as far as we know, we are the first to introduce this idea to the design of parallel
skeleton libraries.
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Figure 1: A Fusion-Embedded Skeleton Library

Our skeleton library for skeletal parallel programming in C++ Figure 1 has the following
new features. First, we need only a single optimization rule, and this rule can be applied to
skeletal parallel programs in any way while guaranteeing the same result and termination.
Second, our library allows new skeletons to be introduced without any change to the
existing optimization framework, and ensures their efficient combination with existing
skeletons in the library. This remedies the situation where transformation rules must take
combinations of the skeletons with existing ones into account. Third, our library is simple to
use. From the programmers’ point of view, as our library does not introduce any new syntax,
a programmer who knows C++ should have no trouble in using it. We construct a structured
interface for the skeletons as well as apply a general optimization rule concisely and quickly
with the help of the reflection mechanism provided with Open C++. We found it very useful
to use meta programming in implementing the transformation, which, we believe, is worth
greater recognition in the skeleton community.

4 From List Skeletons to Tree Skeletons

Trees are useful data types, widely used for representing hierarchical structures such as
mathematical expressions or structured documents like XML. Due to irregularity of tree
structures, developing efficient parallel programs on trees is much more difficult than
developing efficient parallel programs on lists. Unlike linear structure of lists, trees do not
have a linear structure, and hence the recursive functions over trees are not linear either in
the sense that there are more than one recursive calls in the definition body . It is this
nonlinearity that makes the parallel programming on trees complex.

We have given a systematic method for parallel programming using tree skeletons, by
proposing two important transformations, the tree diffusion transformation and the tree
context preservation transformation. The tree diffusion transformation is an extension of the
list version. It shows how to decompose natural recursive programs into equivalent parallel
ones in terms of tree skeletons. The tree context preservation transformation is an
extension of the list version too. It shows how to derive associative operators that are
required when using tree skeletons.

In addition, to show the usefulness of these theorems, we have demonstrated the first
formal derivation of an efficient parallel program for solving the party planning problem
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using tree skeletons.

The three and half years are short, but fruitful and enjoyable. | am pleased that the
results we have achieved are really encouraging; our new parallel skeleton library, together
with a set of nontrivial applications, has proved that the theory of constructive algorithmics,
i.e., the program calculation theory, is practically useful for better solving problems in
parallel programming, which has not been well recognized so far.

Our main contribution is a novel framework supporting efficient parallel programming
using skeletons. First, we have designed and implemented a C++ parallel skeleton library,
with which users can code their parallel algorithms as if they used other library functions
without need to concern about details of parallel architectures and data communications
among processors. Second, we have proposed a programming methodology, which is
useful for systematically developing efficient skeletal parallel programs from initial
straightforward specifications. Third, we have implemented a programming environment,
with which one can develop and run skeletal parallel programs efficiently. This framework
can greatly help easing parallel programming using skeletons, efficiently manipulating both
regular and irregular data, and systematically optimizing skeletal parallel programs.

It is our hope that the results of this work would lead to a future standard framework for
skeletal parallel programming that can greatly help easing parallel programming using
skeletons, efficiently manipulating both regular and irregular data, and systematically
optimizing skeletal parallel programs. In practice, we would expect the first
performance-guaranteed parallel skeleton library in C++, which is really useful for solving
practical problems. We wish it to be a convincing witness of usefulness of constructive
approach in parallel programming. In theory, we would expect a unified algebraic

constructive model for structuring data, control, and communication skeletons in
development of efficient parallel programs.
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