16

38 15

13 12 17 3

-231-

—~ i
—

16
17
17
17
17
17

M A MO M

38

13

28

17

SOMA

Soja

LSl

Web

Web

Web

-232 -

10

(

) NTT

- 233 -

Java

13

13

()

19 13 32
44 45 89
10 5 15
73 63 136
1 1

- 35 2003/04/25

- 2003 2004 6

()

- 234 -

35

21

18

30

39

Web

15

12

-235 -

(1)

)

UML
4
1)
2
3 F-Developer
4)
UML

- 236 -

UML

ObserverPattern HOL 200
4
1
(Assertion Driven
Approach)
1 2 1
2
ﬁilﬂiﬁ
e LTt B EORERE
"_II_.-.DI_I lam |]
o e o {0 R S—
‘ WRSAT5Y
#is’ b =)

i [~ (Fla=ha}{q} ¥ "
== | II- G ©
=E ’ L Eﬁ}b =it {S}
— ,g — RAROERET s H:FE a=faj

}cr':““_“'-'- e e (8,
1
F-Developer
F-Developer
2 F-Prototyper F-Verifier F-Prototyper UML
F-Verifier

HOL

- 237 -

0.12
F-Developer ver.0.2(2003 Dec.) for
Windows

Clalal Adiirin
s e |
rurbn [WL ok, HOL i | b | A, il bk, O v e
: ackd HOL]
I o o |._.I_I o 00 B] = CIOME b
[Fphal hszermian Fakisg e
[i ll u.nf:ln:mjl

% JI':EI.--lr_I?:Iﬂ-I.__-I!Ii'l'

Jﬂll-_-l.d.l Liypar LT, Loyper_box sl Lowymr IT1H|

.i mmnu] E L
mﬂm I—I—l 3 mumber = B I.n-F.JHL-r_I::H L BASTH 0
= ! _pirli-;- s Lopgr W17, Lomer_ier bl Leroer_BACT310
Ll ik e, L [actonDecement w i
e erl i = | -_l.-:J.H:—r_l-u.lr:l e Itk
TConden empty E L'ﬂu':nr Furkim G n--m-r-- e ul
WENE L i Il = reamirer |"'"‘ |E.nn|:u.|ﬂn|
l Decrement E ﬂ"l Laizer &4 [nr_l-.vl.ll.'l
| IllnlIlll
L'm:l:ln'l @
— o
2

- 238 -

Spin

Simulink

SCR(Software Cost Reduction)
SMV
SMV

(1)
@)

)

F-Developer

F-Developer
F-Developer

- 239 -

(2)

10.

11.

12.

(F-Developer)

19
(CD-ROM), 2002.

2003-SE-140 pp.39-46

2003.
Vol.44 No.6 pp.1448-1460 2003
2003-SE-143 pp.21-28 2003
pp.49-58,
2004.
Vol.21, No.4,pp.1-26, July,
2004.
2004, pp.118-125, 2004.
, pp.61-70,
2005

Vol.22, No.1,pp.58-76, 2005.

Takaaki Tateishi, Toshiaki Aoki and Takuya Katayama: Successive Behavior
Approximation Method for Verifying Distributed Objects, Third International Conference
on Parallel and Distributed Computing, Applications and Technologies (PDCAT'02),
pp.439-446, 2002.

Mitsutaka Okazaki, Toshiaki Aoki and Takuya Katayama: Extracting threads from
concurrent objects for the design of embedded systems, Ninth Asia-Pacific Software
Engineering Conference 2002, pp.107-116, 2002.

Mitsutaka Okazaki, Toshiaki Aoki and Takuya Katayama: Formalizing sequence
diagrams and state machines using Concurrent Regular Expression: Proceedings of
2nd International Workshop on Scenarios and State Machines: Models, Algorithms,

- 240 -

13.

14.

and Tools SCESM’03, pp.74-79, 2003.

Kenro Yatake, Toshiaki Aoki and Takuya Katayama: Collaboration-based Verification of
Object-Oriented models in HOL, Proceedings of the 2nd International Workshop on
Verification and Validation of Enterprise Information Systems, VVEIS 2004, pp.78-80,
2004.

Toshiaki Aoki and Takuya Katayama: Foundations for Evolutionary Construction of
State Transition Models, the Seventh International Workshop on Principles of Software
Evolution 2004, pp.143-146, 2004.

- 241 -

SOMA

Solid-Object and Medium Artifact

SOMA

EJB
(reconfiguration)

SOMA
SOMA

- 242 -

SOMA

1 SOMA

SOMA MVC
(calculatorView) (calculatorModel)
(stdin, stdout) stdin, stdout
(O]
SOMA
(cut) (join) (boundary computation)
SOMA C++
SOMA
SOMA soja
Soja

- 243 -

':'_ ieampnlmegicnpdrcieVcalcirefY mycalculator znpa EXEdfnr

TUME ERE RGP RO A

ODSmd q P Exd
| [[Fr] a Y f] [S] f M f [A
{|pregrem wecniculsdars 4

+
var bl = D00
var rawsil iy
il oD T 14
vl disslay = “Enitialized. "0
ruhl s cu | Ibeck vu lysCharged Ces i (siringhis
public pet¥alusi] lxiring [+

rebern dimlayis

o
pblbn =» inprCaris jstringd fvoid [o
mlitch {x)o
cuse "17 ar meom 717 procese "7 er e 717 or coam 47 4
ar ense B of case T0° ar caoe 77 or case BT er came 37 .
bl o U005
taf 4 ol .psrsstelio
dizplay = bad , Leftringl):
fal
casg + o
reaull * dooperak ionlregull, Bof. mlis
I HE
b = 0024

| | T T T T @ 0 om M A

case + |
reluna Befh + righiie

#
defsuli [
felluns 007 /) should reporl drrocs

T—llc wiew &
i'lf-lulr: oormd wadel, widin. cidedd
publin o Ihadk kesfomnds sotringliv
phlis "thiwl) [
wldout -Jprimk] Teeee——1y
wir value Delring © bl pel Valesl)2
. sldauk-2ariek Inl” © 4 wluslzs
Fl
on scdall. ve | usa rgesd lew Lo dxbring) [o
) wldeud -Zpriml In™ © + value];d
o

on eidiremahario soharl e
H [0 &g ') e
A iy Ewslomnirew i rengiciiia
bat
alsg I (oee "4') o
ol 'y kesfomnines ol ringlodihia

lst

whae If [== "En!") {4

I sl by B Deranil 1 it
#

mhee I g == "g') o
roAd iy Emslomn(“clemr™izg
fo Toll PEDROTRlE

.
palllc conirel &
rafareing model, views

" on wiesbelomis talrieg] o
wode - ingl Char o) 4
11 -
[EF) -
=413 CALF 0 A
MVC ()

- 244 -

SOMA

4 N
A
+main()
,/B/ +om() C
+m(c: C) {*}— 3
MethodNotFound | +um() { }
N /
c > A.man Y ¢ . Provide-Require

Requi P Aman(_Jgee

Provide {} { (C,um()} Require

(C,um()) } £ (C, om)|E

C cco) B.m(Cc

Java

SOMA

- 245 -

SOMA

2
Class
Aspect
[assert(Al) | Check a property of
| the component
| assert(A2) Check a context-specific
| assert(A2) property of the component
|
SOMA
3
SOMA
(Soja) SOMA
SOMA

- 246 -

()

SOMA

Soja
Java
lIAnalyzer()
SOMA SOMA soja
14 6 28
, Vol. J87-D-l,

No. 9, pp. 868-870 (2004-9).

, , no. 45, vol. 5, pp. 1357-1366 (2004-5).

D-I, Vol. J86-D-I, No. 12, pp. 906-908
(2003-12).

, D-l, Vol. J86-D-I, No. 12, pp. 863-871 (2003-12).

, vol. 44, No. 8, pp. 2178-2188 (2003-8).
Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue, “CCFinder: A Multi-Linguistic
Token-based Code Clone Detection System for Large Scale Source Code”, IEEE
Trans. Software Engineering, vol. 28, no. 7, pp. 654-670, (2002-7).

- 247 -

®3)

(4)

[]]]]] “
SMMT”, , vol. J85-D-I, no. 6, pp. 503-511.
(2002-6).

()

Takashi Ishio, Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue, “Assertion with
Aspect”, SPLAT'04(Software-Engineering Properties of Languages for Aspect
Technologies), Lancaster, UK, (Mar. 22, 2004).

Yoshiki Higo, Yasushi Ueda, Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue,
“On Software Maintenance Process Improvement Based on Code Clone Analysis”,
LNCS 2559 Product Focused Software Process Improvement, pp. 185-197, Springer,
The 4th International Conference on Product Focused Software Process Improvement
(Profes 2002), Rovaniemi, Finland, (December 9-11, 2002).

Yasushi Ueda, Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue, “On Detection
of Gapped Code Clones using Gap Locations”, Proc. of the IEEE 9th Asia-Pasific
Software Engineering Conference (APSEC 2002), pp. 327- 336, Queensland, Australia,
(December 4-6, 2002).

Toshihiro Kamiya, “SOMA: A Paradigm to Evolve Software Based on Separation of
Concerns”, Proc. of the IPSJ SIGSE/ACM SIGSOFT 5th International Workshop on
Principles of Software Evolution (IWPSE 2002), pp. 124-128, Orland, Florida, (May
19-22, 2002).

, , ; , provide-require

SS2004-7, Vol.104, N0.242, pp.7-12 (2004-8).

, SS2004-1, Vol.104, No.7, pp.1-6
(2004-5).

“ ”

, 2004-SE-144, pp.75-82, (2004-3-18)

“

No.28
(DSW2004) , pp. 159-168 (2004-2-24).

2003 002003 ,
pp. 65-68, (2003-8-21).

2003-SE-143, pp. 29-36, (2003-7-17).
Toshihiro Kamiya, “On an Object-and-Connection Modeling as a Separation of
Concerns Based on Knowledge and Task Abstraction Levels”, The 1st International
Workshop on Designing Human-Software Interaction (DHSI2003), Boulder, Colorado,
(May 26-29, 2003).

11, 14 y NOV. 9, 2002 (

- 248 -

10.

11.

12.

()

(6)

Monden, D. Nakae, T. Kamiya, S. Sato, and K. Matsumoto, “Software quality analysis
by code clones in industrial legacy software”, Proc. of the 8th IEEE Symposium on
Software Metrics (METRICS2002), pp. 87-94, Ottawa, Canada, (June 4-7, 2002).
Yasushi Ueda, Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue, “Gemini:
Maitenance Support Environment Based on Code Clone Analysis”, Proc. of the 8th
IEEE Symposium on Software Metrics (METRICS2002), pp. 67-76, Ottawa, Canada,
(June 4-7, 2002).

Vol.2002, No.23, pp.95-102 (2002-3).

SS2001-52, Vol. 101, No. 674, pp. 17-23,
, , (2002-3-5).

, 35 (2003/04/25).

Vol. 87, No. 9, pp. 791-797 (2004-9).

- 249 -

delimited
continuation

non-local exit

Java try/catch, Lisp catch/throw, exception

extent

Java try/catch

- 250 -

TCS

APLAS’02
continuation
Scheme call/cc call with current
continuation Standard ML/NJ callcc
call/cc call/cc
call/cc 1)

(@)

delimited continuation

shift/reset
1 2x callcc A k.3 k4 -1 2x 3 k4 where k 1 2x0O
-1 2x 4 -5 9
1 2x shiftk.3 k4 -1 3 k4 where k 2x O
-1 3 2% 4 - 12
call/cc shift/reset <...> reset
shift/reset CPS
informal
CPS
shift/reset
CPS
shift/reset
CPS

- 251 -

call/cc

ICFP’03
shift/reset
CW’04
ICFP’04
shift/reset
shift/reset
shift/reset
shift/reset
shift/reset
CPS
shift/reset
shift/reset
shift/reset shift/reset
CW’04
n shift/reset
CPS
CPS
A reset shift
CSL’04
reset CSL 04

- 252 -

web

A

AX. X Xy
AY. X xY

- AY. Xy
- ANZ. xY

arity

- 253 -

XY Z

JFLP
CSL’03

(shift/reset
)

shift/reset

shift/reset

1)
1. Yukiyoshi Kameyama, Peter J. Stuckey (editors), FLOPS 2004 Proceedings, Lecture
Notes in Computer Science Volume 2998, Springer, 307 pages, April, 2004.

2

1. Yukiyoshi Kameyama, Masahiko Sato, “Strong Normalizability of the Non-deterministic
Catch/Throw Calculi”, Theoretical Computer Science 272 (1-2), pp. 223-245, 2002.

2. Masahiko Sato, Takafumi Sakurai, Yukiyoshi Kameyama, “A Simply Typed Context
Calculus with First-Class Environments”, Journal of Functional and Logic Programming

- 254 -

®3)

(4)

2002(4), pp. 1-41, 2002.
Azza A. Taha, Masahiko Sato, Yukiyoshi Kameyama, “A Second Order Context
Calculus”, 19:3, pp. 2-19, 2002.

Vol. 45, No. SIG12 (PRO23), pp. 11-24, 2004.

Yukiyoshi Kameyama, Masahito Hasegawa, “A Sound and Complete Axiomatization
for Delimited Continuations”, Proc. Eighth ACM International Conference on Functional
Programming (ICFP’03), pp. 177-188, 2003.

Masahiko Sato, Takafumi Sakurai, Yukiyoshi Kameyama, Atsushi Igarashi, “Calculi of
Meta-Variables”, Proc. 17th International Workshop on Computer Science Logic
(CSL'03), Lecture Notes in Computer Science Volume 2803, pp. 484-497, 2003.
Yukiyoshi Kameyama, “Axiomatizing Higher-Level Delimited Continuations”, Proc.
Fourth ACM-SIGPLAN Continuation Workshop (CW’04), pp. 49-53, 2004.

Yukiyoshi Kameyama, “Axioms for Delimited Continuations in the CPS Hierarchy”,
Proc. Annual Conference of the European Association for Computer Science Logic
(CSL'04), Lecture Notes in Computer Science Volume 3210, pp. 442-457, 2004.

Yukiyoshi Kameyama, “Dynamic Control Operators in Type Theory”, Second Asian
Workshop on Programming Languages and Systems, Daejon, Korea, Dec., 2001.
Yukiyoshi Kameyama, “Partial Continuation and CPS-Translation”, Workshop on
Foundation of Software, Hangzhou, China, Sep., 2003.

2004 2

- 255 -

(HU, Zhenjiang)

With the increasing popularity of parallel programming environment such as PC cluster,
more and more people, including those who have little knowledge about parallel
architectures and parallel programming, are hoping to write parallel programs to solve their
daily problems. This situation eagerly calls for models and methodologies that can assist
programming parallel computers effectively and correctly.

Data parallel model turns out to be one of the most successful ones for programming
massively parallel computers. To support parallel programming, this model basically
consists of two parts: 1 a parallel data structure to model a uniform collection of data which
can be organized in a way that each element can be manipulated in parallel; and 2 a fixed
set of parallel skeletons on the parallel data structure to abstract parallel computation
structures of interest, which can be used as building blocks to write parallel programs.
Typically, these skeletons include element-wise arithmetic and logic operations, reductions,
prescans, and data broadcasting.

This data parallel model not only provides programmers an easily understandable view of
a single execution stream of a parallel program, but also makes the parallelizing process
easier because of explicit parallelism of the skeletons. For instance, in high performance
Fortran 90/95, the parallel data structure is array and the parallel skeleton is FORALL; in
the parallel language NESL, the parallel data structure is sequence and the most important
parallel skeletons on sequences are apply-to-each and scan; and in the BMF Bird
Meertens Formalisms parallel model, the parallel data structure is typically parallel list, and
the parallel skeletons are mainly map and reduce.

Despite these promising features, the application of current data parallel programming
using skeletons suffers from several problems, which prevent it from being practically used.
Firstly, because parallel programming relies on a set of parallel primitive skeletons for
specifying parallelism, programmers often find it hard to choose proper ones and to
integrate them well in order to develop efficient parallel programs to solve their problems.
Secondly, the skeletal parallel programs are difficult to be optimized, and the major difficulty
lies in the construction of rules meeting the skeleton-closed requirement for transformation
among skeletons. Thirdly, skeletons are assumed to manipulate regular data structures. For
irregular data structures like nested lists where the sizes of inner lists are much different,
the parallel semantics of skeletons would lead to load unbalance which may cancel the
effect of parallelism in skeletons.

This project aims to solve these problems based on the theory of Constructive
Algorithmics, investigating what kinds of recursive structures are suitable for capturing
parallel computation on parallel data structures, and constructing rules for manipulating
such recursive structures.

Our main contribution is a novel framework supporting efficient parallel programming

- 256 -

using skeletons. We have designed and implemented a self-optimizing C++ parallel
skeleton library, with which users, with little knowledge of parallel programming, can
program a wide class of parallel algorithms without the need to be concerned with details of
parallel architectures and data communications among processors. In addition, we have
proposed a programming methodology for systematic development of efficient skeletal
parallel programs. In the following, we shall detail three important results.

4 A Generic Parallel Skeleton for Parallel Programming

We have proposed a new powerful parallel skeleton, which can significantly ease skeletal
parallel programming, efficiently manipulate both regular and irregular data, and
systematically optimize skeletal parallel programs.

We have defined a novel parallel skeleton that cannot only efficiently describe data
dependency in a computation through an accumulating parameter, but also exhibit nice
algebraic properties for manipulation. It can be considered as a higher order list
homomorphism, which abstracts a computation requiring more than one pass and provides
a better recursive interface for parallel programming.

We have given a single but general fusion rule, based on which we construct a
framework for systematically optimizing skeletal parallel programs. Inspired by the success
of the shortcut deforestation for optimizing sequential functional programs in compilers, we
gave a specific shortcut law for fusing composition of skeletal parallel programs, but paying
much more attention to guaranteeing the skeleton-closed property. Our approach using a
single rule is in sharp contrast to the existing approaches based on a huge set of
transformation rules developed in a rather ad-hoc way. Furthermore, we proposed a
flattening rule to deal with both regular and irregular nested data structures efficiently.
Compared to the work by Blelloch where the so-called segmented scan is proposed to deal
with irregular data, our rule is more general and powerful, and can be used to
systematically handle a wider class of skeletal parallel programs.

4 A Self-Optimizing Skeleton Library

We have designed and implemented a parallel skeleton library that guarantees efficient
combinations of skeletons. Our idea was to associate each skeleton not only with an
efficient parallel implementation but also with an interface for efficient combination with
other skeletons. This interface contains information about how the skeleton consumes and
produces its data. This idea is not new in the functional community, where we have seen
the success of shortcut deforestation fusion in optimizing sequential programs in compilers.
However, as far as we know, we are the first to introduce this idea to the design of parallel
skeleton libraries.

- 257 -

Coverston fules

Files & Skeletons

User C Optimized

Fngine /

Program
e A

Program

i
I
|

. t User- lnl tJ‘ Tin :-h anentation
map = buildJ = = s .)

I i buildJ < map

reduce= catad || L lh”'” Library .
| catal = cata)

poly = catal ||
| (OpenC++) ace 2 acc

I
i
: e ——,
1 m J a
: ll’ﬂtl.‘-iiﬂt'ttl'ﬂllﬂ]\ f ‘-
|
i
|
I
|
i

Figure 1: A Fusion-Embedded Skeleton Library

Our skeleton library for skeletal parallel programming in C++ Figure 1 has the following
new features. First, we need only a single optimization rule, and this rule can be applied to
skeletal parallel programs in any way while guaranteeing the same result and termination.
Second, our library allows new skeletons to be introduced without any change to the
existing optimization framework, and ensures their efficient combination with existing
skeletons in the library. This remedies the situation where transformation rules must take
combinations of the skeletons with existing ones into account. Third, our library is simple to
use. From the programmers’ point of view, as our library does not introduce any new syntax,
a programmer who knows C++ should have no trouble in using it. We construct a structured
interface for the skeletons as well as apply a general optimization rule concisely and quickly
with the help of the reflection mechanism provided with Open C++. We found it very useful
to use meta programming in implementing the transformation, which, we believe, is worth
greater recognition in the skeleton community.

4 From List Skeletons to Tree Skeletons

Trees are useful data types, widely used for representing hierarchical structures such as
mathematical expressions or structured documents like XML. Due to irregularity of tree
structures, developing efficient parallel programs on trees is much more difficult than
developing efficient parallel programs on lists. Unlike linear structure of lists, trees do not
have a linear structure, and hence the recursive functions over trees are not linear either in
the sense that there are more than one recursive calls in the definition body . It is this
nonlinearity that makes the parallel programming on trees complex.

We have given a systematic method for parallel programming using tree skeletons, by
proposing two important transformations, the tree diffusion transformation and the tree
context preservation transformation. The tree diffusion transformation is an extension of the
list version. It shows how to decompose natural recursive programs into equivalent parallel
ones in terms of tree skeletons. The tree context preservation transformation is an
extension of the list version too. It shows how to derive associative operators that are
required when using tree skeletons.

In addition, to show the usefulness of these theorems, we have demonstrated the first
formal derivation of an efficient parallel program for solving the party planning problem

- 258 -

using tree skeletons.

The three and half years are short, but fruitful and enjoyable. | am pleased that the
results we have achieved are really encouraging; our new parallel skeleton library, together
with a set of nontrivial applications, has proved that the theory of constructive algorithmics,
i.e., the program calculation theory, is practically useful for better solving problems in
parallel programming, which has not been well recognized so far.

Our main contribution is a novel framework supporting efficient parallel programming
using skeletons. First, we have designed and implemented a C++ parallel skeleton library,
with which users can code their parallel algorithms as if they used other library functions
without need to concern about details of parallel architectures and data communications
among processors. Second, we have proposed a programming methodology, which is
useful for systematically developing efficient skeletal parallel programs from initial
straightforward specifications. Third, we have implemented a programming environment,
with which one can develop and run skeletal parallel programs efficiently. This framework
can greatly help easing parallel programming using skeletons, efficiently manipulating both
regular and irregular data, and systematically optimizing skeletal parallel programs.

It is our hope that the results of this work would lead to a future standard framework for
skeletal parallel programming that can greatly help easing parallel programming using
skeletons, efficiently manipulating both regular and irregular data, and systematically
optimizing skeletal parallel programs. In practice, we would expect the first
performance-guaranteed parallel skeleton library in C++, which is really useful for solving
practical problems. We wish it to be a convincing witness of usefulness of constructive
approach in parallel programming. In theory, we would expect a unified algebraic

constructive model for structuring data, control, and communication skeletons in
development of efficient parallel programs.

1. Kiminori Matsuzaki, Zhenjiang Hu, Kazuhiko Kakehi, Masato Takeichi, Systematic
Derivation of Tree Contraction Algorithms, to apper in Parallel Processing Letters,
2005.

2. Hideya lwasaki, Zhenjiang Hu, A New Parallel Skeleton for General Accumulative
Computations, International Journal of Parallel Programming, 32 (5): 389-414,
October 2004.

3. Tetsuo Yokoyama, Zhenjiang Hu, Masato Takeichi, Deterministic Second-order

- 259 -

10.

11.

12.

13.

14.

15.

Patterns, Information Processing Letters, Vol. 89, No.6, Elsevier, 2004. pp. 309-314.

, , , 2 ,

, 21 (5): 71-76, 2004.

Dana Na Xu, Siau-Cheng Khoo, Zhenjiang Hu, PType System : A Featherweight
Parallelizability Detector, Second ASIAN Symposium on Programming Languages and
Systems (APLAS 2004), Taipei, Taiwan, November 4-6, 2004. LNCS 3302, Springer
Verlag. pp.197-212.
Kiminori Matsuzaki, Kazuhiko Kakehi, Hideya Ilwasaki, Zhenjiang Hu, Yoshiki Akashi,
A Fusion-Embedded Skeleton Library, International Conference on Parallel and
Distributed Computing (EuroPar 2004), Pisa, Italy, 31st August - 3rd September, 2004.
LNCS 3149, Spinger Verlag. pp.644-653 .
Kiminori Matsuzaki, Zhenjiang Hu, Kazuhiko Kakehi, Masato Takeichi, Systematic
Derivation of Tree Contraction Algorithms, 4th International Workshop on
Constructive Methods for Parallel Programming (CMPP 2004), Stirling, Scotland, UK,
14 July, 2004. pp. 109-124.
Kazuhiko Kakehi, Zhenjiang Hu, Masato Takeichi, List Homomorphism with
Accumulation, 4th International Conference on Software Engineering, Atrtificial
Intelligence, Networking, and Parallel/Distributed Computing (SNPD'03), Lubeck,
Germany. October 16-18, 2003. pp. 250-259.
Mizuhito Ogawa, Zhenjiang Hu, Isao Sasano, lterative-free Program Analysis, 8th
ACM SIGPLAN International Conference on Functional Programming, (ICFP 2003),
Uppsala, Sweden: 25-29 August 2003. ACM Press. pp.111-123.
Tetsuo Yokoyama, Zhenjiang Hu, Masato Takeichi, Deterministic Second-order
Patterns and Its Application to Program Transformation, International Symposium on
Logic-based Program Synthesis and Transformation (LOPSTR 2003) Uppsala,
Sweden: 25-27 August 2003. pp. 165-178. Revised version appears in LNCS 3018,
2004. Springer Verlag. pp. 128-142
Kiminori Matsuzaki, Zhenjiang Hu, Masato Takeichi, Parallelization with Tree
Skeletons, International Conference on Parallel and Distributed Computing (Euro-Par
2003), Klagenfurt, Austria, 26th - 29th August 2003. Lecture Notes in Computer
Science 2790, Springer Verlag. pp.789-798. An extended version appears as
Technical Report METR 2003-21, Department of Mathematical Informatics, University
of Tokyo, 2003.
Zhenjiang Hu, Tomonari Takahashi, Hideya Iwasaki, Masato Takeichi, Segmented
Diffusion Theorem (invited paper), 2002 IEEE International Conference on Systems,
Man and Cybernetics (SMC 02), Hammamet, Tunisia, October 6-9, 2002. IEEE
Press.
Wei-Ngan Chin, Zhenjiang Hu, Towards a Modular Program Derivation via Fusion
and Tupling, The First ACM SIGPLAN Conference on Generators and Components
(GCSE/SAIG 2002), Pittsburgh, PA, USA, October 6-8, 2002. Affiliated with (PLI 2002).
Lecture Notes in Computer Science 2487, Springer Verlag. pp.140-155.
Zhenjiang Hu, Hideya Ilwasaki, Masato Takeichi, An Accumulative Parallel Skeleton for
All , 11th European Symposium on Programming (ESOP 2002), Grenoble, France,
April 8 - 10, 2002. Lecture Notes in Computer Science 2305, Springer Verlag.
pp.83-97.

- 260 -

, , Vol. 43, No. SIG 3(PRO 14), pp. 62-77,
March 2002.

- 261 -

LSI

LSI

Pentium 4 IBM POWER5

block-multithreading

PCS

- 262 -

PCB ”

PCS
PCS
PCS
PCS
FIFO
PRESTOR-1
LSI

PRESTOR-1 PRESTO RISC-1 LSI

PRESTOR-1

VHDL PRESTOR-1 RTL

230

- 263 -

FIFO RTL FIFO
83%

LSI
LSI

(0N

PRESTOR-1 RTL

1. Khairuddin Khalid and Kiyofumi Tanaka, Implementation of FIFO Buffer Using Cache
Memory, , Vol.2002, No0.150, pp.83 88,
2002

2. Kiyofumi Tanaka, Fast Context Switching by Hierarchical Task Allocation and
Reconfigurable Caches, Proc. of International Workshop on Innovative Architecture for
Future Generation High-Performance Processors and Systems 2003, IEEE Computer
Society Press, pp.20 29, 2003.

3. Khairuddin Khalid and KiyofumiTanaka, Evaluation of Cache Memory as FIFO Buffer,

, V0l.2003, No.27, pp.91 96, 2003

4. Kiyofumi Tanaka and Tomoharu Fukawa, Highly Functional Memory Architecture for
Large-Scale Data Applications, Proc. of International Workshop on Innovative
Architecture for Future Generation High-Performance Processors and Systems 2004,
IEEE Computer Society Press, pp.109 118, 2004.

5. , ; *

, V01.2004, No.123, pp.89 94, 2004

6. Kiyofumi Tanaka, PRESTOR-1: A Processor Extending Multithreaded Architecture,
International Workshop on Innovative Architecture for Future Generation
High-Performance Processors and Systems, 2005.

- 264 -

Web

Web
Web Web

Web
W3C World Wide Web Consortium OASIS Organization for the
Advancement of Structured Information Standards

Web OASIS
WS-BPEL Web Service Business Process Execution Language
WS-BPEL
Web
Web
WS-BPEL
Web
Web
WS-BPEL
Web
WS-BPEL
WS-BPEL
WS-BPEL
WSFL Web Service Flow Language
WSFL Web WS-BPEL

BPEL4WS Business Process Execution Language for Web Service

WSFL Web

- 265 -

WSFL Web
Web
WSFL Promela
Promela SPIN
WSFL
WSFL
Web
Web SOAP
WS-Security Web
WS-Authorization
WS-BPEL
Web
Web
dominates
dominates
dominates
Flow-Up
Flow-Up
dominates
Declassification
P1 T1 T3
L P1 P1
L P1 dominates L T1
L P1 dominates L T3
L T3 dominates L T1
dominate T1 T3
P1 P1 T1
P1 P1 T3
T1 T3
P1
DCL
L P1 dominates L DCL

- 266 -

L DCL dominates L T1

L T3 dominates L DCL
DCL P1 DCL T1
DCL T3 L T1
L DCL dominates DCL
dominates dominates
DCL DCL
DCL
dominates
dominates dominates
4.1
WS-BPEL 4.1
Web
Web
WSFL Web
WSFL XLANG
BPEL4WS WS-BPEL

WS-BPEL WSFL
WSFL WS-BPEL

- 267 -

1)

)

, . EJB SPIN ,
, Vol.19, No.2, pp.2-18 (2002 3)
Web , , Vol.44,
No.3, pp.942-952 (2003 3).

,Vol.21, No.2, pp.32-36 (2004 3).

S. Nakajima : Verification of Web Services Flows with Model-Checking Techniques,
International Symposium on Cyber World (CW 2002), pp. 378-385 (2002 11).
S. Nakajima : Behavioural Analysis of Component Framework with Multi-Valued
Transition Systems, Asia-Pacific Software Engineering Conference (APSEC 2002),
pp.217-226 (2002 12).

S. Nakajima : Model-Checking of Safety and Security Aspects in Web Service
Flows, International Conference on Web Engineering (ICWE 2004), pp. 488-501
(2004 7).

G.J.Holzmann The SPIN Model Checker,
, Vol.21, No.2, pp.61-69 (2004 3).
Vol.45, No.7,
pp.690-693 (2004 7)

2003 (2004 6)

- 268 -

10

Ubiquitous Computing
1980

- 269 -

Xerox

Palo Alto

S p
S, Sp - . - S
Si Si
Sp P’ Sp
Sp S So
Si
Sy Sp Si
Sq S

P,:Sp bd . Sq S| -
Sp
P’ Sy Sq
P
C main
Java
Java
Java JPDA Java Platform Debugger Architecture = BCEL Byte

Code Engineering Library

- 270 -

Mica Mote Crossbow oS
TinyOS U.C.Berkeley
SerialForwarder

Socket

- 271 -

Java

@)
1.
No.5 2002
2.
@)
1.
PPL2002

®3)

SerialForwarder

Vol.43

1. SUS-X/Java: A Software Update System for the Java™ Programming Language

-272 -

