戦略的創造研究推進事業 CREST 研究領域「情報システムの超低消費電力化を 目指した技術革新と統合化技術」 研究課題「極限ゲート構造によるシステムディスプ レイの超低消費電力化」

研究終了報告書

研究期間 平成17年10月~平成23年3月

研究代表者:小林 光 (大阪大学産業科学研究所、教授)

§1 研究実施の概要

本プロジェクトでは、システムディスプレイの超低費消費電力化を目的として、材料、プロセス、 デバイス、回路、システムを統合的に研究開発した。材料、プロセス、デバイスからのアプローチと して、大阪大学小林研究室で開発したシリコンの低温酸化法である「硝酸酸化法」を活用した。硝 酸酸化法では、シリコンを濃度 68%の共沸硝酸に浸漬するだけで、高性能な極薄 SiO₂/Si 構造を 120℃以下の低温で創製できる。120℃以下の低温で酸化膜を形成するにもかかわらず、従来最 も特性が良いとされていた 900℃程度の高温を用いる熱酸化法よりも良好な電気特性、特に低いリ ーク電流密度が達成できる。本プロジェクトでは、硝酸酸化膜の極低リーク電流特性を、システム ディスプレイ駆動の薄膜トランジスター(TFT)のゲート酸化膜に応用することによって、ゲート酸化 膜の薄膜化と微細化、超低消費電力化を行った。

TFTのゲート酸化膜は、従来プラズマ CVD 法などの堆積法を用いて形成されていた。堆積法で 形成したゲート酸化膜は、1)凹凸のある多結晶シリコン薄膜上に均一な膜厚の酸化膜を形成でき ない、2)膜中に多くのハイドロカーボンや水分を含み、膜密度が低く、バルク特性が悪い、3)堆積 膜の形成前の表面が堆積後 SiO₂/Si 界面となるため、界面での不完全な結合形成や堆積前の表 面汚染のため、界面特性が悪いという問題点があった。一方、硝酸酸化法は直接酸化法であるた め、1)凹凸のある多結晶シリコン薄膜上にも均一な膜厚の酸化膜が形成できる、2)膜密度が高く 良好なバルク特性を持つ、3)界面準位密度が低く、良好な界面特性を持つといった利点がある。 したがって、多結晶シリコン薄膜上に硝酸酸化法によって極薄酸化膜を形成した場合、ここでリー ク電流をブロックできるため、その上に堆積法で形成する SiO₂膜の膜厚を低減できると発想した。 本プロジェクトでは、この発想に基づき、硝酸酸化法の上に形成するゲート酸化膜の膜厚を従来の 80nm から 40nm、さらに 20nm、最終的には 10nm と低減していった。TFT の消費電力は駆動 電圧の自乗に比例し、駆動電圧はゲート絶縁膜の膜厚の増加と共に増加する。したがって、ゲート 酸化膜が 80nm の場合駆動電圧は 15V であったが、それを 40、20、10nm と低減した場合、低消 費電力化率の大きな向上が期待できる。さらに、ゲート絶縁膜の薄膜化によって、TFT の微細化 が可能となり、これによって高性能化と低消費電力化を行うことも可能となる。

40nm のゲート酸化膜を持つ TFT の駆動電圧は 2.5V であり、低消費電力化率は 1/36 であった。20nm のゲート酸化膜では駆動電圧が 2V、低消費電力化率は 1/56 であった。最終的に達成 した 10nm のゲート酸化膜を持つ TFT では1V 駆動が可能となり、低消費電力化率は 1/225 と、 当初予想していた 1/25 の低消費電力化率よりも格段に良好な低消費電力化率を達成することが できた。10nm のゲート酸化膜を持つ TFT の閾値電圧の絶対値は、n-ch TFT、p-ch TFT 共に、 0.4~0.6V と良好であった。10nm までゲート酸化膜を薄膜化させたにもかかわらず、ゲートリーク は 10⁻¹³A とノイズレベル程度であり、硝酸酸化膜が有効にリーク電流をブロックしていることがわかった。極低オフ電流が達成できた結果、on/off 比は、10⁹と非常に良好であった。良好な界面特性 のため、S 値は理論限界 60mV/dec に近い 70~80mV/dec であった。チャネル移動度は、n-ch TFT で約 150cm²/Vs、p-ch TFT で約 100cm²/Vs と良好であった。また、硝酸酸化法で形成した TFT のリングオシレータの出力特性は良好であり、3V で 250MHz 以上の周波数で動作が可能で あることがわかった。

回路、システム面からもシステムディスプレイの超低消費電力化を行った。動画と静止画部分を 区別して駆動するマルチドライバ方式を用いて、さらにリフレッシュレートを低くすることによって、超 低消費電力化率 1/9 を達成した。ディスプレイ全体の低消費電力化率は、デバイス部分によって 達成されている低消費電力化率とシステム部分のそれとの積になる。したがって、全体の低消費電 力化率は、40nm ゲート酸化膜 TFT では 1/324、20nm ゲート酸化膜 TFT では 1/504、10nm ゲ ート酸化膜 TFT では 1/2025 となる。

システム面からの超低消費電力化の他のアプローチとして、画素メモリを用いる方式を開発した。 それによって、外部周辺回路を停止でき、リフレッシュレートを従来の60Hzから1Hzにまで低減で きた。その結果、低消費電力化率1/50が達成できた。

§2. 研究構想

(1)当初の研究構想

TFTの消費電力は駆動電圧の自乗に比例するため、本プロジェクトでは駆動電圧を低減 して消費電力を大幅に削減することを第一の目的とする。その目的を達成するため、新規 のシリコンの低温酸化法である「硝酸酸化法」をゲート酸化膜の形成に用いる。硝酸酸化 膜は、硝酸を沸騰させ発生する原子状酸素とシリコンを反応させる直接酸化法である。原 子状酸素は反応性が非常に高く、共沸硝酸の沸点である 120℃の低温でもシリコンを酸化し て SiO₂膜を形成できる。

硝酸酸化法は直接酸化法であるため、従来の低温での SiO₂ 膜の形成法であるプラズマ CVD 法に比較して格段に良質の SiO₂ 膜が形成できる。さらに、凹凸のある表面にも均一な 膜厚の SiO₂ 膜を形成することができる。その上、直接酸化法であるため、酸化前にシリコ ンバルクであったところに SiO₂/シリコン界面が形成される結果、良好な界面特性を得るこ とができる。これらの結果、ゲート酸化膜厚を現在の 50nm 程度から 20nm 以下に低減す ることが可能である。ゲート酸化膜の薄膜化によって、TFT の駆動電圧を現在の 15V から 5V に、さらに 3V にまで低減し、その結果 TFT の消費電力を 1/9、さらに 1/25 に削減する ことを目指す。

液晶用 TFT の微細化・高性能化は現在ゲート長が開発レベルで最小 1.5µm レベルでと どまっており、これ以上の微細化には新たな発想による技術革新が求められている。微細 化が困難な理由は、TFT の重要性能を決定するゲート絶縁膜が前述したように PECVD 法 を用いて作製されており、その悪い膜質のため薄膜化ができないことである。本プロジェ クトでは、TFT のゲート酸化膜の形成に硝酸酸化法を用いることによって低温で良質の酸 化膜を形成して、それによって TFT の微細化を目指す。最終的には、硝酸酸化法を用いる ことによって世界で初めてサブミクロン TFT の創製を目指す。

このような高性能 TFT トランジスタを用いれば、液晶用 TFT デバイスのシステム化、 高機能化を実現できる。機能集積化を実現するためには、TFT の微細化・高性能化が必須 であるが、回路・システムとしての低消費電力化も重要である。超低消費電力化のために は、CMOS 回路構成に代わり、パストランジスタロジック構成を用いることが有効である。 本プロジェクトでは、この構成を用いて、従来の 1/5 から 1/10 に消費電力を低減すること を目指す。また、マルチドライバ技術や画素メモリ SRAM を活用したカラー画像ソフト処 理や並列処理を採用することにより、1/2 以下に消費電力が削減できる。以上の回路技術・ システムアーキテクチャ・ソフトウエアを採用することにより、1/10 以下に消費電力を削 減することを目指す。

以上の新しい材料・プロセス・デバイス・回路・システムアーキテクチャ・ソフトウェ ア処理を統合して、TFTの消費電力を 1/250 以下に削減することを目指す。

硝酸酸化法では、120℃の低温で SiO₂ 膜が形成できるため、従来のガラス基板に代わりプ ラスチック基板を用いることが可能となる。ガラス上の TFT とそれを用いた高機能 SDOG の研究開発を推進することにより、プラスチック基板を用いた TFT と高機能 SDOP(system display on plastics)の研究開発を加速することも、本プロジェクトの目的とする。

(2)新たに追加・修正など変更した研究構想

本研究を進めていく中、硝酸酸化法 SiO₂/CVD 法 SiO₂スタック構造を持つゲート酸化膜 が予想以上に良好な特性を持つことがわかった。したがって、TFT 試作は、このスタック ゲート構造 TFT を中心として行った。上述したように、このスタックゲート構造を用いて 当初予定の 3V 駆動よりも大幅に低減した 1V で TFT が駆動できることがわかり、この技 術単独で低消費電力化率 1/225 を達成できた。当初計画に含まれていた二段階硝酸酸化法 で形成する 10nm 程度の比較的厚い膜厚を持つ SiO₂ 膜も、900℃で形成される熱酸化膜と 同等以上の電気特性を持つことがわかった。しかし、二段階硝酸酸化法を用いた場合、従 来の TFT プロセスが大幅に変更になるため、TFT 試作は見送った。

一方、エネルギー問題、環境問題に対する社会の関心が高まり、硝酸酸化技術を太陽電池に応用する研究を進めた。その結果、硝酸酸化法によりシリコン表面のパッシベーションが可能で、これを用いた場合シリコン太陽電池の変換効率が1.5割程度向上することがわかった。

§3 研究実施体制

(1)「小林」グループ

①研究参加者

氏名	所属	役職	参加時期	
小林 光	大阪大学産業科学研究所	教授	H17.10~H23.3	
岩佐 仁雄	大阪大学産業科学研究所	特任教授	H17.10~H23.3	
寺川 澄雄	大阪大学産業科学研究所	特任教授	H17.10~H23.3	
中戸 義禮	大阪大学産業科学研究所	特任教授	H17.10~H23.3	
笠井 俊夫	大阪大学産業科学研究所	特任教授	H22.4~H23.3	
高橋 昌男	大阪大学産業科学研究所	准教授	H17.10~H23.3	
松本健俊	大阪大学産業科学研究所	助教	H.19.1~H23.3	
金佑柄	大阪大学産業科学研究所	特任助教	H18.4~H23.3	
毎田 修	大阪大学産業科学研究所	助手	H17.10~H18.3	
山本 泰正	大阪大学産業科学研究所	特任教授	H17.10~H18.3	
長山	大阪大学産業科学研究所	特任研究員	H17.10~H22.3	
田中 祐士	大阪大学産業科学研究所	特任研究員	H17.10~H18.3	
吉田 亮	大阪大学産業科学研究所	特任研究員	H18.4~H20.3	
桐原 正治	大阪大学産業科学研究所	特任研究員	H18.4~H19.3	
野桜 玲子	大阪大学産業科学研究所	研究補助員	H18.4~H23.3	
正司 雅美	大阪大学産業科学研究所	研究支援推進員	H17.10~H23.3	
Motaharu Mazumder	大阪大学産業科学研究所	特任研究員	H21.4~H23.3	
劉 玥伶	大阪大学産業科学研究所	特任研究員	H18.9~H19.3	
山田 幹浩	大阪大学産業科学研究所	特任研究員	H18.4~H23.3	
石川 幸男	大阪大学大学院理学研究科	大学院生	H17.10~H19.3	
任 星淳	大阪大学大学院理学研究科	大学院生	H17.10~H19.9	
成田 比呂晃	大阪大学大学院理学研究科	大学院生	H17.10~H19.3	
服部 研作	大阪大学大学院理学研究科	大学院生	H17.10~H18.3	
大江 秀樹	大阪大学大学院理学研究科	大学院生	H17.10~H18.3	
深山 権一	大阪大学大学院理学研究科	大学院生	H17.10~H18.3	
小林 克稔	大阪大学大学院理学研究科	大学院生	H17.10~H18.3	
今村 健太郎	大阪大学大学院理学研究科	大学院生	H18.4~H20.3	
浦郷 将英	大阪大学大学院理学研究科	大学院生	H18.4~H20.3	
宍戸 豪	大阪大学大学院理学研究科	大学院生	H18.4~H20.3	

柳瀬 隆	大阪大学大学院理学研究科	大学院生	H18.4~H21.3
Madani Mohammad	大阪大学大学院理学研究科	大学院生	H17.10~H20.3
一花 祐一	大阪大学大学院理学研究科	大学院生	H18.4~H21.3
山崎 大地	大阪大学大学院理学研究科	大学院生	H21.4~H23.3
岩田 隆	大阪大学大学院理学研究科	大学院生	H19.4~H.21.3
東 裕子	大阪大学大学院理学研究科	大学院生	H19.4~H.22.3
大仲 亜由美	大阪大学大学院理学研究科	大学院生	H20.4~H22.3
黒木 貴久	大阪大学大学院理学研究科	大学院生	H20.4~H21.3
田中 峻介	大阪大学大学院理学研究科	大学院生	H20.4~H22.3
深谷 洋介	大阪大学大学院理学研究科	大学院生	H21.4~H23.3
井川 麻衣	大阪大学大学院理学研究科	大学院生	H21.4~H23.3
趙恵淑	大阪大学大学院理学研究科	大学院生	H21.4~H23.3
Francisco Franco	大阪大学大学院理学研究科	大学院生	H22.6~H23.3
金昌鍋	大阪大学大学院理学研究科	大学院生	H21.4~H23.3
王愷	大阪大学大学院理学研究科	大学院生	H21.4~H23.3
谷 礼王馬	大阪大学大学院理学研究科	大学院生	H22.4~H23.3
古川 淳一	大阪大学大学院理学研究科	大学院生	H22.4~H23.3
柳生 真依	大阪大学大学院理学研究科	大学院生	H22.4~H23.3
前田 譲章	大阪大学大学院理学研究科	大学院生	H21.4~H23.3
清野 友樹	大阪大学大学院理学研究科	学部生	H22.4~H23.3

②研究項目

- 1. 硝酸酸化プロセスの研究開発
- 2. 気体硝酸酸化法の検討
- 3. 硝酸法による CVD 堆積膜の改質
- 4. 新規欠陥消滅法による TFT の高性能化
- 5. 大面積 TFT 用硝酸酸化装置の開発
- 6. 大面積 TFT の硝酸酸化技術の開発と試作

(2)「谷口」グループ ①研究参加考

①妍充参加有			
氏名	所属	役職	参加時期
谷口 研二	大阪大学大学院工学研究科	教授	H17.10~H23.3
鎌倉 良成	大阪大学大学院工学研究科	助教	H17.10~H23.3
辻 博史	大阪大学大学院工学研究科	特任研究員	H17.10~H23.2
葛岡 毅	大阪大学大学院工学研究科	学部生	H17.10~H18.3
桐原 正治	大阪大学大学院工学研究科	特任研究員	H19.4~H22.3
大倉 鉄郎	大阪大学大学院工学研究科	大学院生	$\mathrm{H}22.5{\sim}\mathrm{H}23.3$
Bogoda Indika	大阪大学大学院工学研究科	大学院生	H99 5~H93 3
Udaya Kumara	八殿八子八子阮工于研九杆	八子阮王	1122.0 - 1120.0

中野 慎介	大阪大学大学院工学研究科	大学院生	H20.4~H22.3
金 良守	大阪大学大学院工学研究科	特任研究員	H22.10~H23.3

②研究項目

- 1. 新構造デバイスの研究開発
- 2. 硝酸酸化膜 TFT の SPICE モデルの研究開発

3. 超低消費電力 TFT 用の新回路機能ブロックの研究開発

(3)「今井」グループ

研究参加者

氏名	所属	役職	参加時期
今井 繁規	シャープ株式会社 研究開発本部 ディスプレイシステム研究所	所長	H17.10~H23.3
中野 成能	シャープ株式会社 研究開発本部 ディスプレイシステム研究所	参事	H17.10~H19.9
迫野 郁夫	シャープ株式会社 研究開発本部 ディスプレイデバイス研究所	所長	H17.10~H19.9
小川 裕之	シャープ株式会社 研究開発本部 ディスプレイデバイス研究所	主任研究員	H17.10~H19.9
赤阪 仁孝	シャープ株式会社 研究開発本部 ディスプレイデバイス研究所	副参事	H18.1~H19.9
中島 伸二	シャープ株式会社 研究開発本部 ディスプレイデバイス研究所	主事	H18.1~H19.9
寺内 崇	シャープ株式会社 研究開発本部 ディスプレイデバイス研究所	主事	H18.1~H19.9
小渕 保司	シャープ株式会社 研究開発本部 ディスプレイデバイス研究所	副参事	H18.4~H19.9
河合 倫大	シャープ株式会社 研究開発本部 ディスプレイシステム研究所	主事	H18.4~H23.3
吉田 茂人	シャープ株式会社 研究開発本部 ディスプレイシステム研究所	主事	H18.10~H23.3
平山 泰弘	シャープ株式会社 研究開発本部 ディスプレイシステム研究所	主任技師	H19.4~H23.3
嶋谷 貴文	シャープ株式会社 研究開発本部 ディスプレイシステム研究所	主事	H19.10~H23.3
佐々木 伸夫	シャープ株式会社 研究開発本部 ディスプレイシステム研究所	副所長	H19.4~H19.9
松田 登	シャープ株式会社 液晶事業本部 パネル設計センター	参事	H21.6~H23.3
西 修司	シャープ株式会社 液晶事業本部 パネル設計センター	主事	H21.6~H23.3
今村 健太郎	シャープ株式会社 研究開発本部 ディスプレイシステム研究所	担当	H22.4~H23.3
久保田 靖	シャープ株式会社 液晶事業本部 パネル設計センター	副所長	H22.4~H23.3
福島 隆史	シャープ株式会社 研究開発本部 総務部	部長	H22.4~H23.3

②研究項目

- 1. 大面積 TFT 用硝酸酸化装置の開発
- 2. 大面積 TFT の硝酸酸化技術の研究開発
- 3. メモリ・CPU 内蔵の超低消費電力 SDOG の研究開発

§4 研究実施内容及び成果

1. 硝酸酸化プロセスの研究開発 (大阪大学 小林グループ)

1-1.共沸硝酸酸化法の研究開発

(1)研究実施内容及び成果

硝酸酸化法では、シリコンを共沸硝酸(68%)以上の濃度の硝酸に浸漬することによって、リーク 電流密度が低く良好な電気特性を持つ1.2~1.4nmの極薄SiO2膜が形成できる。したがって、後 述するようにこれをTFTのゲート酸化膜の界面層に用いることによって、その上にCVD法で形成 するSiO2膜の膜厚を減少でき、その結果駆動電圧と消費電力を大幅に低減することができる。以

シリコン表面

酸化膜表面

酸化膜のエッチング表面

図1 シリコン表面のAFM写真: a) NH₄F エッチングによって形成した Si(111)平坦面; b) 試料 a を共沸硝酸で酸化した表面; c) 試料 b を NH₄F でエッチング後の Si(111)表面

下、リーク電流密度の低い極薄 SiO₂ 膜を 形成するための研究を行った。

原子レベルで平坦なシリコン表面は、化 学エッチングや水素処理を用いて比較的 容易に形成できる。原子レベル平坦面上 に、硝酸酸化法を用いてSiO₂膜を形成す る場合、120℃の低温で成膜ができるため、 SiO₂ 界面が荒れることなく元の平坦性を 保つと期待できる。平坦な界面を形成でき れば、均一なSiO₂膜厚と均一な電界等に より、リーク電流密度の低減とSiO₂膜の薄 膜化が可能で、TFTの超低消費電力化に 繋がる技術となる。

Si(111)ウェーハを RCA 洗浄後、フッ酸 (HF)でエッチングした場合、原子レベル でラフな表面が形成され、ルート平均自乗 (RMS)ラフネスは、0.19nm であった。こ のラフな表面を硝酸酸化した場合、酸化 膜の表面はラフであった。また、硝酸酸 化膜を除去した後のシリコン表面もラ フであった。この結果は、ラフな表面を 硝酸酸化すると、ラフな Si/SiO₂ 界面が 形成されることを示している。

図 2 共沸硝酸酸化法で形成した
 <Al/1.2~1.3nm SiO₂/Si(111)>
 MOS ダイオードの電流-電圧特
 性:a) ラフな Si(111)表面を硝酸
 酸化;b) ダイオードaを PMA処理;c) 原子レベルで平坦な
 Si(111)表面を硝酸酸化;d) ダイ
 オードcを PMA処理

一方、フッ化アンモニウム(NH4F)でシリ コンをエッチングした場合、図 1a に示すよう に bi-layer step が観測された。これは、シリ コン表面が原子レベルで平坦であることを示 している。図 1a では、RMS ラフネスは 0.13nm であった。この表面を硝酸酸化した場合、やは り bi-layer step が観測され(図 1b)、さらに、 この酸化膜をエッチングした後にも、bi-layer step が観測され(図 1c)、Si/SiO2界面が原子レ ベルで平坦であったことがわかる。すなわち、 平坦なシリコン表面を硝酸酸化した場合、平坦 な Si/SiO2界面が形成される。RMS ラフネス は 0.07nm と、超平坦な界面が形成されたこと がわかる。

図2に、硝酸酸化膜をもつ<Al/SiO₂/Si(111)> MOSダイオードの電流・電圧特性を示す。共沸 硝酸に1時間浸漬することにより形成された 酸化膜の膜厚は、1.2~1.3nmであった。図中 の矢印は、種々の文献で報告されている約 1.5nmの膜厚を持つ熱酸化膜のリーク電流密

図 3 一段階硝酸酸化法で形成した <Al/1.2~1.4 nm SiO₂/Si(100)> MOS ダイオードのリーク電流 密度の硝酸濃度依存性

度である。フッ酸エッチングしたシリコン上に形成した硝酸酸化膜のリーク電流密度は、 熱酸化膜に比較して少し高いが(曲線 a)、5%の水素雰囲気中 250℃で熱処理(Postmetallizatian anneal, PMA)した後には、熱酸化膜とほぼ同等のリーク電流密度となった (曲線 b)。一方、フッ化アンモニウムでエッチングして原子レベルの平坦面を形成し、それ を硝酸酸化した場合、リーク電流密度は熱酸化膜よりも少し低くなった(曲線 c)。これを

PMA 処理することによって、リーク電流密度はさらに低減して(曲線 d)、熱酸化膜の 1/10 程度の低いリーク電流密度を達成できた。

超平坦面と PMA 処理による硝酸酸化膜の低リーク電流密度は、1)均一な膜厚の SiO2 膜、 2)SiO2 中の均一な電界、3)Si²⁺に起因する欠陥準位の低減、4)SiO₂/Si 界面での高いバンド の不連続エネルギー、によると結論した。

ー段階硝酸酸化法を用いて単結晶シリコン上に膜厚 1.2~1.4 nm の酸化膜を形成し、その上 に Al 電極を作製して、<Al/SiO₂/Si(100)> MOS 構造とした。図 3 に、MOS ダイオードのリーク電 流密度と酸化に用いた硝酸濃度の関係を示す。硝酸濃度の増加と共にリーク電流密度は低減し、 濃度 98wt%の高濃度硝酸を用いた場合、リーク電流密度は 1.5 nm の膜厚を持つ熱酸化膜の 1/100 程度、同換算膜厚を持つシリコンオキシナイトライド膜と比較してもさらに低いリーク電流密 度を持つことが確認された。

図4に、硝酸酸化法で形成した極薄 SiO₂/Si 構造のフーリエ変換赤外吸収スペクトルを示す。 Si-O-Si 非対称伸縮振動の longitudinal optical (LO)フォノン及び transverse optical (TO)フォノンの 2 本のピークが観測されている。これら二本のピークの振動数、 v_{LO} 及び v_{TO} 、から SiO₂ 膜の原子密度、 ρ 、を次式を用いて求める

ことができる。

$$C\rho = v_{LO}^{2} - v_{TO}^{2}$$
 (1)

ここで、定数 C は熱酸化膜の値から求める ことができる。

図5に、V_{LO}及びV_{TO}から求めたSiO2膜 の原子密度を示す。原子密度はシリコンの 酸化に用いた硝酸濃度の増加に伴って増 加した。SiO2 膜の原子密度の増加に伴って、 SiO2/Si 界面でのバンドの不連続エネルギ ーが増加することがわかった。バンドの不連 続エネルギーが増加することによって、キャ リアーが酸化膜をトンネルする確率が減少し て、リーク電流密度が低減したと考えられる。

図 6 に、硝酸酸化法で形成した極薄 SiO2/Si 構造の Si 2p 領域の XPS スペクト ルを示す。99 及び 103eV 近傍に強度の強 いピークが観測されており、これらはそれぞ れシリコン基板と SiO2 膜のものである。これ

らのピークの面積強度比から、SiO₂ 膜の 膜厚が 1.2~1.4nm と求められた。これら 二本のピークの間に、サブオキサイド(Si +、Si²⁺、Sⁱ³⁺)による強度の弱いピークが 観測された。硝酸濃度の増加に伴って、 これらサブオキサイドのピークの強度は減 少した。硝酸濃度の増加に伴い、酸化力 が増加し、不完全な酸化物であるサブオ キサイドが減少したと考えられる。サブオ キサイドは、電子やホールのトラップ準位 として働くと思われる。硝酸濃度の増加に 伴い、トラップ準位が減少することも、リー ク電流密度低減の一要因であると思われ

図 6 種々の濃度の硝酸を用いて形成した 極薄 SiO₂/Si 構造の XPS スペクトル: (a) 40wt%; (b) 68wt%; (c) 98wt%

図7 室温硝酸酸化膜/CVD酸化膜のスタック ゲート構造を持つTFTの断面TEM写真

る。

室温共沸硝酸酸化法を用いて、TFT TEG を作製した。作製した TEG の断面透過顕微鏡 (TEM) 写真を図 7 に示す。Poly-Si と CVD SiO₂ 膜の間に約 1.8nm の厚さで黒い部分が 観測され、これが硝酸酸化膜である。黒く観測されることから、硝酸酸化膜の原子密度が CVD 酸化膜の原子密度よりも高いことがわかる。

(2) 研究成果の今後期待される効果

一段階硝酸酸化法では、緻密で界面特性の良好な極薄 SiO2 膜を 120℃以下の低温で形成で きる。したがって、一段階硝酸酸化法を、ガラス基板上に製造されるTFT のゲート酸化膜形成に応 用することができる。良好な界面特性のために、TFT の高性能化さらに微細化を行うことが可能と なる。また、極薄であるため、LSI のゲート酸化膜に応用することができる。LSI では、微細化の進 行に伴い、ゲート酸化膜が薄膜化しそれを流れるリーク電流の増大が問題になっているが、硝酸 酸化法で形成した SiO2 膜は従来の熱酸化膜よりも格段に低いリーク電流を持つため、応用が期 待される。

さらに、一段階硝酸酸化法で形成した SiO2 膜の良好な界面特性を利用して、シリコンの表面パ ッシベーションを行うことができる。我々が開発した硝酸酸化法を表面パッシベーションに用いる研 究、特に表面パッシベーションによってシリコン太陽電池を高効率化する研究が、ヨーロッパ、オー ストラリア、台湾、韓国等で行われている。我々が所有している多くの硝酸酸化法のノウハウをシリ コン太陽電池に活用することによって、大きな変換効率の向上が期待できる。

1-2.二段階硝酸酸化法の研究開発

(1)研究実施内容及び成果 一段階硝酸酸化法では、良好 な電気特性を持つ極薄 SiO₂ 膜 を形成することができるが、酸 化膜の膜厚を 1.5nm 以上に増 加することはできない。厚い酸 化膜は、二種類の濃度の硝酸を 用いる二段階硝酸酸化法によ って、120℃の低温で形成する ことができる。

表1に、二段階硝酸酸化法で 形成された SiO₂ 膜厚を 示す。Si(100)と Si(111) 基板を酸化した際、酸化 時間が4時間で両方とも 約6nmのSiO₂膜が形成 された。つまり、二段階 硝酸酸化法では、酸化速 度の面方位依存性が存 在しないことが確認さ れた。800℃以上の高温 を要する熱酸化では、Si 図

(111)面の酸化速度は Si(100)面の酸化速度の 約1.7倍であり、その結

表 1	二段階硝酸酸化法により Si(100)及び Si(111)
	表面上に形成された SiO₂膜の膜厚

Oxida	tion time (h)	${ m SiO}_2$ thickness (nm)
n-Si(100) ~ 10 Ω cm	4	5.8
n-Si(111)	4	6.2
~ 0 52 CIII		

図 8 二段階硝酸酸化法により多結晶シリコン薄膜上に形成された SiO2 膜の TEM 写真

果種々の面方位が露出している多結晶シリコンを酸化した場合、均一な膜厚を持つ SiO2 膜 は形成できない。一方、硝酸酸化法では、酸化速度の面方位依存性がないために、多結晶 シリコン表面を酸化した場合にも均一な膜厚を持つ SiO2 膜が形成できると期待される。 図8に、TFT用多結晶シリコン薄膜を二段階硝酸酸化した後に観測した断面TEM写真 を示す。共沸硝酸を用いての二段階目の酸化時間は、100分である。多結晶シリコン表面に

はかなりの凹凸が存在するに もかかわらず、均一な膜厚、約 10nm を持つ SiO₂ 膜が形成さ れていることがわかる。粒界領 域が選択的に酸化されないこ ともわかる。均一な膜厚を持つ SiO₂ 膜の形成は、二段階硝酸酸 化が、1)直接酸化である、2)面 方位依存性が無いことによる。 均一な膜厚の SiO₂ 膜が形成さ れることによって、ゲート酸化 膜の膜厚を低減でき、この結果 TFT の消費電力が低減できる。

多結晶シリコン TFT はガラス基

図 9 多結晶シリコン薄膜の TEM 写真:a) 硝酸 酸化前、b) 二段階硝酸酸化後

板上にプラズマ CVD 法を用いてアモルファスシリコンを堆積して、それをレーザーアニールして結 晶化することによって作製される。レーザーアニール後の冷却過程で、表面に突起物(リッジ)が生 成する(図9a)。凹凸のある表面に CVD 等の堆積法を用いてゲート酸化膜を形成すれば、凸の部 分で酸化膜厚が小さくなりここをリーク電流が流れる。リーク電流を防止するためゲート酸化膜を 50 ~100nm と厚くする必要があり、この結果駆動電圧が増加し消費電力が大きくなる。また、リッジの 存在は微細構造の作製を困難にして歩留りを低下させる。

図9bに、TFT 多結晶シリコン薄膜上に二段階硝酸酸化法を用いて形成した SiO₂/多結晶シリコン構造の断面透過電子顕微鏡(TEM)写真を示す。約10nmの均一な膜厚を持つSiO₂膜が形成されていることがわかる。さらに、図9aと比較すれば、硝酸酸化前に50nm以上の高さであったリッジが、半分以下の高さまで低減していることがわかる。したがって、硝酸酸化法を用いれば、リッジ低減の面からもTFT の低消費電力化が可能となる。

二種類の濃度の硝酸を用いる二段階硝酸酸化法では、120℃の低温で 10 nm 以上の膜厚を 持つ酸化膜が形成でき、その良好なリーク電流特性と界面特性より、TFT のゲート酸化膜厚を大 幅に減少でき、TFT 駆動電圧を 2.5 V 程度に低減できると考えられる。

二段階目の硝酸濃度を 68wt%(共沸硝酸)とした場合そのリーク電流密度は小さくなり、さらに

図 10 <Al/SiO₂/Si(100)> MOS ダイオードの電流-電圧特性(a)、電気容量-電圧特性(b)。 黒は 120℃で形成された二段階硝酸酸化膜、赤は 900℃で形成された熱酸化膜の特性 を示す。

250℃で水素処理を施した場合、図 10a に示すように 900℃の高温で形成された熱酸化膜と同レベルのリーク電流密度を持つことがわかった。さらに、図 10b に示すようにその電気容量・電圧 (C-V)特性は熱酸化膜とほぼ同レベルであり、界面準位密度、固定電荷密度が共に非常に小さい ことが確認された。

(2)研究成果の今後期待される効果

二段階硝酸酸化法では、10nm 以上の膜厚を持つ厚い SiO₂ 膜を 120℃の低温で形成できる。したがって、この SiO₂ 膜を単独で TFT のゲート酸化膜に応用できると考えている。

10nm 程度の膜厚で十分に低いリーク電流が得られるため、ゲート酸化膜の薄膜化が可能となり、この結果微細化と駆動電圧の大幅な低減による超低消費電力化ができる。また、LSI で比較的厚いゲート酸化膜を必要とする高耐圧アナログ IC に応用することも期待される。さらに、オーストラリアでは、この二段階硝酸酸化法をシリコンの表面パッシベーションに利用する研究が行われており、今後益々応用範囲の拡大が期待される。

- 2. 気体硝酸酸化法の検討(大阪大学 小林グルー プ)
 - (1)研究実施内容及び成果

図 11 に、シリコンを 400℃の低温で酸化した際に 形成される SiO₂ 膜厚と酸化時間の関係を示す。従来 の乾燥酸化や加湿酸化では、400℃の低温ではシリ コンはあまり酸化されず SiO₂ 膜厚は最大 2.5nm であ る。一方、気相硝酸酸化では酸化が進行して、 4nm 以上の膜厚を持つ SiO₂ 膜が形成できること がわかった。I-V 測定の結果、350℃で形成した SiO₂ 膜では Poole-Frenkel 機構によって、500℃ で形成した場合は Fowler-Nordheim 機構によっ てリーク電流が流れることが分かった。

98%の高濃度硝酸の蒸気を用いる硝酸酸化 を検討した。濃度 98%硝酸の蒸気中の硝酸濃度 は 99.7%であり、ほぼ純粋の硝酸による酸化と いえる。この蒸気を用いて 100℃で酸化した後 に観測した断面 TEM 写真を図 12a に示す。 0.7nm の均一な膜厚を持つ SiO₂ 膜がシリコン 表面に形成されていることがわかる。この SiO₂ 膜を空気中に 2 週間放置した後に測定した膜厚 も、0.7nm であった。また、この酸化膜の原子 密度は、 $2.53 \times 10^{22}/cm^3$ と 熱酸化 膜

(2.28×10²²/cm³) や濃度 68%の硝酸蒸気で 形成した酸化膜(2.46×10²²/cm³)よりも高か った。緻密な酸化膜が形成されたために、酸素 の拡散が防止された結果、空気中に放置しても 酸化が進行しないと考えられる。硝酸蒸気酸化 の温度を 200℃に上昇した場合、SiO₂ 膜厚は 1.6nm に増加した(図 12b)。

図 11 シリコンを 400℃で酸化 した場合に形成される SiO₂ 膜の膜厚と酸化時間の関 係:a)乾燥酸化;b)加湿酸 化;c)気相硝酸酸化

図 12 ~100%硝酸蒸気で形成し た SiO₂/Si(100)構造の断面 TEM 写真:(a) 100℃での硝酸 蒸気酸化;(b) 200℃での硝酸 蒸気酸化 図 13 に、~100%硝酸蒸気で形成した SiO₂/Si(100)構造のリーク電流特性を示す。曲線(a)~(d)では 100℃で硝酸酸化を行い、SiO₂ 膜厚は 0.7nm である。硝酸酸化膜上にア

ルミニウム(Al) 電極を形成後、5% の水素雰囲気中 250℃での post-metallization anneal (PMA)を施 すことによってリーク電流密度が大幅 に低減し、同膜厚の熱酸化膜に比較し て1/50程度と低いリーク電流密度が得 られた。硝酸蒸気で形成したSiO2膜を 電子がトンネル伝導する確率から、 SiO2/Siの平均障壁高として1.02eVを 得た。この値は、熱酸化膜の値よりも 約0.2eV高い値である。高いエネルギ 一障壁高の原因は、高い原子密度であ ると考えられ、これによってトンネル 確率が小さくなり低いリーク電流密度 が得られたと思われる。

(2) 研究成果の今後期待される効果 気体硝酸酸化法では、0.65~5nmの SiO2 膜が 400℃以下の低温で形成できる。 したがって、TFT のゲート酸化膜に応用で きる以外、以下の用途に応用できる。すなわ ち、0.65nmという極薄かつ超高性能特性を 利用して、1)高誘電体膜を用いる LSI のゲ ート絶縁膜の界面層、2)シリコン太陽電池 の表面パッシベーション層。1)では、LSIの 集積度の増加とともに、ゲート絶縁膜の薄膜 化が進行し、これを流れるリーク電流の増加 が問題となっている。これを解決するため、 HfO2 などの高誘電体薄膜が検討されてい るが、界面特性が悪いという問題がある。気 体硝酸酸化法では、界面特性の良好な極 薄 SiO2 膜を形成できるので、この上に高誘 電体膜を形成して、LSI のゲート酸化膜とし て用いることができる。太陽電池へも、気体 硝酸酸化膜の良好な界面特性を利用して 表面パッシベーションを行うことができるが、 光生成した少数キャリアはこの酸化膜をトン ネル的に通過する必要がある。したがって、 酸化膜は極薄である必要があり、気体硝酸 酸化法がこの用途に最も適していると考えら れる。

 3. 硝酸法による CVD 堆積膜の改質(大阪大学小林グループ)
 (1)研究実施内容及び成果 共沸硝酸に浸漬することによって、プラズマ CVD 法で形成された SiO2 膜を改

図 13 ~100%硝酸蒸気で形成した SiO₂/Si(100) 構造のリーク電流特性。酸化膜厚とシリコン 基板の比抵抗: (a) 0.65nm, ~10 Ωcm, PMA な し; (b) 0.65nm, ~10 Ωcm, PMA あり; (c) 0.65nm, ~0.01 Ωcm, PMA なし; (d) 0.65nm, ~0.01 Ωcm, PMA あり; (e) 1.5nm, ~10 Ωcm, PMA なし; (f)) 1.5nm, ~10 Ωcm, PMA あり

図 14 プラズマ CVD 酸化膜/シリコ ン構造の C-V 曲線:a) 処理な し;b) 121℃の共沸硝酸で1時 間処理;c)b)の試料を200℃で 加熱処理;d) 熱酸化膜

質することができる。図 14 に、<Al/プラズマ CVD-SiO₂ 膜(38nm)/Si(100)>MOS ダイオー ドの電気容量-電圧(C-V)曲線を示す。処理しない場合(曲線 a)、C-V 曲線はかなり負ゲート バイアス領域に観測され、これは SiO₂ 膜や SiO₂/Si 界面に正電荷が高密度で存在すること を示す。共沸硝酸処理を1時間施した場合、C-V 曲線は約 2V 正電圧方向にシフトして、正 電荷密度が低減したことを示す。共沸硝酸処理後、200℃で加熱処理を施すことによってさ らに正電圧方向にシフトして(曲線 c)、熱酸化膜の C-V 曲線(曲線 d)とほぼ同じ位置に観測 された。この結果は、CVD 酸化膜の特性が、共沸硝酸処理によって熱酸化膜に近くなるこ とを示すものである。共沸硝酸による改質は、酸素原子が SiO₂ 中の欠陥準位に結合してそ れが消滅することによると考えられる。

(2) 研究成果の今後期待される 効果

硝酸法による CVD 膜の改質法は、液 晶ティスプレイ用 TFT のゲート酸化膜の 改質に限定されず、CVD 堆積膜を用い る種々の半導体デバイスに広く応用でき る。例えば、LSI 用層間絶縁膜のリーク 電流低減、太陽電池のパッシベーション 膜の改質、積層 3 次元 TFT のゲート酸 化膜の改質などに展開できる。

- 4. 新規欠陥消滅法による TFT の高性
 - 能(大阪大学 小林グループ)
 - (1)研究実施内容及び成果

HCN 水溶液等のシアン溶液では、 CN⁻イオンがシリコンダングリングボンド 等の欠陥準位に選択的に吸着すること によって欠陥準位が消滅すると共に、金 属汚染を除去できる。図15に示すように、 低濃度の HCN 水溶液(従来洗浄法で は数%濃度の洗浄液が必要)に室温で

(従来洗浄法では 50~80℃に 加熱)洗浄するだけで、鉄、ニ ッケル、クロム、銅、亜鉛等の 種々の金属汚染を除去するこ とができる。本プロジェクトでは、 大型 TFT に使用できる欠陥消 減型洗浄法を開発した。

TFTはLSIに比較して大型 であり、LSIの洗浄に用いる高 濃度(数%以上)の薬液を使用 することはできない。本プロジ ェクトでは、ppm オーダーの極 低濃度 HCN 水溶液でも十分 な金属除去効果を有すること を見出した。(これは、当初計 画では想定されていなかっ た。)

図 16 に、2.6ppm と 1ppm

図 15 0.15%の HCN 水溶液を室温で用いて、種々の金属で汚染されたシリコンウェーハを洗浄する前後に観測した全反射蛍光 X 線スペクトル

 図 16 極低濃度 HCN 水溶液で銅汚染のあるシリコンウ ェーハを洗浄した際の銅濃度と洗浄時間の関係:a)
 22℃の 2.6ppmHCN 水溶液で洗浄、b) 35℃の 1ppm HCN 水溶液で洗浄。

の濃度を持つ HCN 水溶液を用いて銅で強制汚染したシリコンウェーハを洗浄した際の、表面銅 濃度と洗浄時間の関係を示す。2.6ppmのHCN 水溶液で洗浄した場合、室温(25℃)でも2分以 内に分光装置の検出限界(全反射蛍光 X 線分光装置、検出下限:~3×10⁹ 原子/cm²)以下に銅 汚染が除去された。さらに低濃度の 1ppm HCN 水溶液で洗浄した場合も、液温を 35℃に上昇 することによって5分以内に銅汚染が完全に除去された。

シアン化合物の一般的な環境排出基準は1ppmであり、HCN洗浄液の廃液の排出は困難でない。また、紫外線照射+オゾン水処理で、シアン成分は炭酸ガスと窒素に完全無毒化・分解でき、イオン交換膜を用いても簡単に除去できる。さらに、金属触媒を用いてメタンとアンモニア等から高濃度(~3000ppm)のHCN水溶液をかなりの速度(500 mL/h)で合成することにも成功しており、TFT 製造への応用に必要な基本的技術は確立できている。

(2) 研究成果の今後期待される効果

HCN 水溶液による洗浄法は、欠陥消滅型半導体洗浄法と呼んでいる。すなわち、HCN 水溶液中のシアン化物イオン(CN⁻)がシリコンダングリングボンドなどの欠陥準位に選択的に吸着して欠陥準位が消滅する。したがって、この欠陥消滅型半導体洗浄法では、金属汚染の除去と同時に欠陥準位が消滅するため、これら2つの効果によって半導体デバイスの特性が向上する。TFT に用いられている多結晶シリコン薄膜には特に粒界に多くの欠陥準位が存在し、これを欠陥消滅型半導体洗浄法で消滅させることによって、移動度の向上による高性能化を行うことができる。また、多結晶シリコン、単結晶シリコン、球状シリコン等のシリコン太陽電池の高性能化を欠陥消滅型半導体洗浄法で行えることがわかっており、今後硝酸酸化法を用いる表面パッシベーション法と組み合わせて実用化が進行するものと考えている。この方法を用いて、現在すでに日本の太陽電池メーカーのみならず韓国、台湾、ヨーロッパ等の海外でも広く実用化を見据えた共同研究を行っている。

5. 大面積 TFT 用硝酸酸化装置の開発(大阪大学 小林グループ)

(1)研究実施内容及び成果

32×40cm²サイズの TFT ガラス基板の硝酸酸化装置(図 17)を用いて、多結晶シリコン薄膜の酸化を行った。今回の実験では、硝酸の温度を徐々に上げ 116℃以上の温度を保持することによって多結晶シリコン薄膜の酸化を行った。

微細・高性能な TFT の作製を行うため、クリーンな試作実験環境を実現した。重金属などの微量分析は、全反射蛍光X線分析(TXRF)を用いた。その結果、LSIの製造も可能で、TXRFの検出限界でもある 3×10⁹ atoms/cm²以

下まで、金属汚染レベルを低減することに成功した。(表2)

図 17 TFT 用硝酸酸化装置

汚染金属	改良前(1010	改良後(1010
	atom/cm ²)	atom/cm ²)
K	168.9	検出限界以下
Ca	119.2	検出限界以下
Ti	805.0	0.3
V	検出限界以下	検出限界以下
Mn	6.4	検出限界以下
Cr	227.8	検出限界以下
Fe	573.2	検出限界以下
Ni	50	検出限界以下
Zn	9.2	検出限界以下
Cu	0.3	検出限界以下

表 2 大面積 TFT 用硝酸酸化装置の改良前後での硝酸酸化膜を形成したシリ コンウェーハ上の汚染金属濃度

図 18 二段階硝酸酸化法で、32×40cm²サイズの多結晶シリコン基板上に 120℃で形成 された SiO₂ 膜の膜厚分布

(2)研究成果の今後期待される効果

開発した硝酸酸化装置は、TFT 製造のみならず、LSI、太陽電池等の半導体製品に広く応用できる。本プロジェクトの遂行によって我々は硝酸酸化装置について多くのノウハウを見出しており、 それを装置メーカーに技術移転することによって硝酸酸化装置を実用化する予定である。現在すでに国内外の半導体装置メーカー数社に対して技術移転と共同研究が進行中である。

- 新構造デバイスの研究開発(大阪大学谷口グループ)
 (1)研究実施内容及び成果
- 6-1. C-V 特性の周波数依存性の検討

二次元デバイスシミュレータを用い、TFT における C-V 特性の周波数依存性の検討を行った。図 19 に C-V 特性のシミュレーション結果を示す。計算には、I-V 特性の実測値から 見積もった界面準位密度を用いた。図 19a は Si/SiO₂ 界面に界面準位が存在する場合の計 算結果で、kHz オーダーの低い周波数で C-V 特性に大きな周波数分散が生じることが分か る。これは、界面準位におけるキャリアの捕獲・放出が入力信号の周波数に追随できなく なることが主な原因である。一方、図 19b に示すように、界面準位が存在しない場合には、 C-V 特性に周波数分散がほとんど見られない。

次に、C-V 特性の周波数分散に対する界面準位密度およびゲート酸化膜厚の影響を調べるために、界面準位密度を 1/2 にした場合(図 20)と、ゲート酸化膜厚を 1/2 にした場合(図 21)について、C-V 特性の計算を行った。図 20, 21 と図 19a の比較から、界面準位密度が低く、また、ゲート酸化膜厚が薄くなるほど、周波数分散が小さく抑えられることが分かった。

以上から、硝酸酸化法により、界面準位密度の低減および酸化膜の薄膜化が実現されれば、C-V特性における周波数分散の大幅な低減ができると期待される。

図 20 界面準位密度が 1/2 の場合の C-V 特性のシミュレーション結果

図 21 ゲート酸化膜厚が 1/2 の場合の C-V 特性のシミュレーション結果

6-2. 酸化膜のスタック構造の有効性の検討

TFTの低電圧動作の実現には、TFT 特有の緩やかなサブスレッショルド特性の改善が必要である。そこで、本研究では、サブスレッショルド係数(S値)を改善するための方法として、硝酸酸化膜と CVD 酸化膜を組み合わせたスタック構造について、その有効性をデバイスシミュレータを用いて検討した。以下に、シミュレーションに用いた条件を示す。

<u>シミュレーション条件 (2D デバイスシミュレータ:ATLAS)</u> L=4 μ m CVD 酸化膜厚:t_{ox,CVD}= 20, 40, 80 nm NAOS 酸化膜厚:t_{ox,NAOS}= 1 nm ボディ膜厚:t_{si}= 50 nm 固定電荷:N_f= 1e11 cm⁻² 界面準位密度:D_{tr}= 5e11 cm⁻²eV⁻¹(Reference) / 5e10 cm⁻²eV⁻¹(スタック構造)

スタック構造をとるTFTでは、酸化膜がNAOS膜とCVD膜の二段構造になっているのに対して、 比較のための Reference の TFT では、酸化膜は CVD 膜のみで構成されている。また、シミュレー

図 22 Id-Vg特性のシミュレーション結果

ションでは、NAOS酸化膜は CVD酸化 膜に比べて、界面準位密度が一桁小 さくなると仮定している。図 22 に、CVD 酸化膜が 80nm の場合の I_a-V_g特性の シミュレーション結果を示す。Reference TFT に比べて、スタック構造 TFT では サブスレッショルド特性が急峻になって いるが、これは、界面準位密度の低減 効果によるものである。

次に、CVD 酸化膜の膜厚を変えて 同様のシミュレーションを行い、S 値の CVD 酸化膜厚依存性を調べた。その 結果を図 23 に示す。酸化膜厚を変え ても、S 値はスタック構造 TFT の方が小 さくなっており、スタック構造の優位性 が示された。

図 23 S 値の CVD 酸化膜厚依存性

6-3. 回路 TEG の試作・評価

硝酸酸化プロセスを用いて回路 TEG(リングオシレータ)の試作を行い、特性評価を行った。図24に37段リングオシレータの出力特性(電源電圧 VDD=3V)の測定結果、図25に動作周波数の電源電圧依存性を示す。VDD=3VでTFTの動作周波数が250 MHzとなり、低電圧で高速なデバイス動作を確認した。

(2)研究成果の今後期待される効果 デバイスシミュレータを用いた解析により、 界面準位密度の低減および酸化膜の薄 膜化により、C-V特性における周波数分散 の低減や、I-V特性におけるサブスレッショ ルド特性の大幅な改善が期待できることが 分かった。さらに、硝酸酸化プロセスを用 いた回路 TEG の試作・評価結果から、低 電圧で高速なTFT のデバイス動作が確で きたたことから、硝酸酸化 TFT の様々な機 能回路への応用が期待される。

 7. 硝酸酸化膜 TFT の SPICE モデルの 研究開発(大阪大学谷ログループ)

(1)研究実施内容及び成果

多結晶シリコン TFT におけるモデリング の課題として、緩やかなサブスレッショルド 特性の再現が挙げられる。多結晶シリコン 薄膜の結晶粒が大きく、さらに、その結晶 性が良い場合、Si/SiO₂界面の界面準位が この緩やかな電流特性の原因であることが 指摘されている。また、緩やかなサブスレッ ショルド特性により弱反転領域と強反転領 域の境界が曖昧になるため、従来からのし きい値電圧をパラメータとして用いたモデリ ング手法では、高精度なドレイン電流モデ ルの構築は困難である。

本研究では、界面準位の影響を考慮し、 表面ポテンシャルを用いた多結晶シリコン

図 26 N-ch poly-Si TFT における(a)Id-Vg 特性と(b)Id-Vd 特性の実測値と計算値の比較

TFT のドレイン電流モデルを開発した。ドリフト-拡散近似に基づいてモデリングを行うことで、弱反 転領域から強反転領域(線形、飽和領域)までのドレイン電流特性を単一のドレイン電流式を用い て計算することが可能となった。さらに、本モデルでは、短チャネル TFT にも対応できるように、キ ンク効果、DIBL(Drain Induced Barrier Lowering)効果、チャネル長変調効果などの影響も考慮して いる。

図 26 に標準的なプロセスで試作された n 型多結晶シリコン TFT における (a) I_d-V_g 特性と (b) I_d-V_d 特性の実測値と、本モデルによる計算値の比較結果を示す。比較に用いたデバイスは、チャネル長 L=10 μ m、チャネル幅 W=20 μ m、酸化膜厚 t_{ox} =80nm である。図 26(a)に示すように、実測値の緩やかなサブスレッショルド特性及び DIBL による I_d-V_g 特性の低ゲート電圧側へのシフトが本モデルにより再現されている。また、図 26(b)から、高ドレイン電圧印加時のキンク効果を含め、線形領域から飽和領域まで、実測値が精度よく再現されており、本モデルの有効性を示している。

さらに、図 27 に、NAOS プロセスで試作された TFT に本モデルを適用した結果を示す。比較に 用いたデバイスは、チャネル長 L=3.6 µm、チャネル幅 W=10 µm、酸化膜厚 t_{ox}=20nm である。弱反 転領域から強反転(線形, 飽和)領域までのドレイン電流特性が高精度に再現されていることが分 かる。

図 27 NAOS-TFT における(a)Id-Vg 特性と(b)Id-Vd 特性の実測値と計算値の比較

(2)研究成果の今後期待される効果 考案した TFT のドレイン電流モデルは、モ デルパラメータの数が少ないことに特長があり、 さらに、弱反転領域から強反転(線形,飽和) 領域までの特性を高精度に再現することがで きる。今後、上記モデルを用いることで、高精 度な回路シミュレーションの実現が期待され る。

8. 超低消費電力 TFT 用の新回路機能ブロ ックの研究開発(大阪大学谷ログルー プ)

(1)研究実施内容及び成果

現在の液晶ディスプレイ等では、TFT パ ネル(ポリシリコン)と外部の D/A コンバ ータや駆動回路(単結晶シリコン)等をケ

ーブルで接続している。もし外部回路がガラ ス基板上に作製できるなら、ケーブルの浮遊 容量に対する無駄な充放電がなくなり、消費 電力の削減が見込まれる。しかし TFT パネル 上のアナログ回路の実現は、個々の素子特性 のばらつきが非常に大きいため非常に困難を 極める。そこでそのような素子特性を考慮し てアナログ基本回路である全差動増幅器を考 案した。

アナログ回路は正相信号と逆相信号の処理 をするために同一回路が必要となる。既存回 路アーキテクチャではすべてのトランジスタ の特性が揃っているとして設計されているた め、そのような同一回路は簡単に設計できる

が、TFT では素子ごとに特性が異なる。そこで信号処理の根本から考え直し、正相出力信 号と逆相出力信号の基準電位が違うゆえ特性が異なる素子を用いたアナログ回路が実現で きないことを見出した。その基準電位が揃うように図 28 に示すカスコード構造の全差動ア ンプ回路を考案した。簡単な解析の結果、しきい値や移動度のバラツキが小さければ電源 電圧が抑えられることがわかった。

これとは別に TFT の電極からなる負荷容量へのユニティゲインバッファを提案した(図 29)。ユニティゲインバッファは入力と同一の電位を出力する回路であるが、入力を直接負 荷容量に接続すると駆動能力が低いため充電時間がかかる。そこで提案回路では一旦 VDD まで充電するようなブースター回路を動作させる。そして、その出力をモニターしながら 入力電位と等しくなる時にその回路を切り、容量の電位が入力電位とほぼ等しくなってか ら入力を接続するようにした。しかもその回路を切断した時点でブースター回路の漏れ電 流をなくすように改良した。シミュレーションによる検証結果、消費電力は理論的に必要 な消費電力の約 3~4 倍程度に抑えることができた。

(2)研究成果の今後期待される効果

考案した TFT に特化したカスコード型全差動増幅器は、シミュレーション結果より通常 の差動増幅器と比較してバラツキが2桁以下になることがわかった。また、TFT の電極から なる負荷容量への新規ユニティゲインバッファは、駆動能力が低い TFT を用いても消費電 力を低減することが可能であることをシミュレーション結果で確認した。今後上記トポロ ジーを組み合わせることで、TFT アナログ回路の集積化の加速が期待される。

9. 大面積 TFT の硝酸酸化技術の開発と試作(大阪大学小林グループ、シャープ今井グル ープ)

(1)研究実施内容及び成果

本プロジェクトの中心課題である硝酸酸化法を用いる TFT の創製とその超低消費電力化につい て、以下に記載する。本プロジェクトの超低消費電力を達成するために、TFT のゲート酸化膜の膜 厚を市販 TFT の 80nm から 40nm、20nm、さらに最終的には 10nm に低減させた。硝酸酸化膜 の極低リーク特性の結果、このようにゲート酸化膜の膜厚を大幅に低減しても TFT のゲートリーク 電流は許容範囲以下で、TFT が正常に動作した。ゲート酸化膜の薄膜化によって当然駆動電圧 は低減し(10nm ゲート酸化膜を持つ TFT では 1V 駆動に成功)、超低費電力化(10nm ゲート酸 化膜を持つ TFT では低消費電力化率 1/225)が達成できた。さらに、微細化にも成功し、サブミク ロン TFT を創製することができた。

室温硝酸酸化法で形成する 1.8nm SiO₂ 膜と CVD 法で形成する SiO₂ 膜のスタックゲート 構造を持つ TFT を創製した。図 30 に、CVD 酸化膜の膜厚を 40nm とした場合に観測され

図 30 1.8nm 硝酸酸化膜/40nm CVD 酸化膜のスタックゲート構造を持つ P-ch 及び N-ch TFT の閾値電圧

た閾値電圧を示す。閾値電圧 は、P-ch TFT では 0.8~1.1V、 N-ch TFT では 0.4~0.7V と 良好であった。この低い閾値 電圧のため、以下に示すよう に 2.5V 駆動が可能であった。

図 31 に 1.8nm 硝酸酸化膜 /40nmSiO₂ 膜スタックゲート 構造を持つTFTのドレイン電 流ードレイン電圧(Id-Vd)特 性を示す。P-ch TFT と N-ch TFT 共に、高電圧領域で飽和 する理想的な形状を持ち、飽 和電流も高かった。観測した Id-Vd 特性から、P-ch、N-ch TFT 共に 2.5V 駆動が可能で あることがわかった。したが って、従来の 15V 駆動のTFT

性

図 32 硝酸酸化法 1.8nm SiO₂/CVD 法 40nm SiO₂のスタックゲート構造を持つ TFT の I_d-V_g特性とゲートリーク電流

と比較して、低消費電力化率は1/36にとなった。

図 32 に、同スタックゲート構造を持つ TFT のドレイン電流-ゲート電圧(I_d - V_g) 特性とゲート酸化膜を流れるリーク電流を 示す。P-ch TFT と N-ch TFT 共に、急峻な 立ち上がりを示した。両 TFT 共に、リーク 電流は $10^{-13}A$ 程度とノイズレベルであっ た。この結果は、硝酸酸化膜が効果的にリ ーク電流を遮断するために、その上に形成 する CVD 酸化膜の膜厚を従来の半分であ る 40nm としても、十分に良好なリーク電 流特性を持つことを示している。また、硝 酸酸化法は直接酸化法であるため、CVD 酸 化膜に比較して格段に良好な界面特性を持 っために、急峻な I_d - V_g 特性が得られたと考 えられる。

以下、本プロジェクトで達成した最も 薄いゲート酸化膜厚である 10nm のゲー ト酸化膜厚を持つ TFT について記載す る。

図 33 に、形成した TFT の断面 TEM 像を示す。~10 nm のゲート絶縁膜が形 成されていることがわかる。

図 34 に、1.4nm 共沸硝酸酸化膜/10nm CVDSiO₂ 膜のスタックゲート構造を持 つ TFT の閾値電圧を示す。N-ch TFT の 閾値電圧は 0.2~0.4V、P-ch TFT では-0.3~-0.6V であった。このように低い 閾値電圧のため、駆動電圧を以下に示す ように 1 V まで低減することに成功して いる。ここでは、10nm という極薄ゲー

ト酸化膜を用いているため TFT の微細化が可能となり、ゲート長 0.9 µ m のサブミクロン TFT の創製ができている。

図 35 に、1.4nm 共沸硝酸酸化膜/10nm CVDSiO₂ 膜のスタックゲート構造を持つ TFT の ドレイン電流・ドレイン間電圧 (Id-Vd) 曲線を示す。市販されている TFT の動作電圧 15V からこれを 3V、2V、1V と低下させても十分に大きな飽和電流と飽和電流特性を持ち、1 V 駆動が可能であることがわかる。前述したように、TFT の消費電力は動作電圧の自乗に

比例するため、15V 駆動の従来 TFT に比較して、低消費電力化率は 1/225 となる。

図 36 に、1.4nm 共沸硝酸酸化膜/10 nm CVD SiO₂ 膜のスタックゲート構造を持 っ TFT のドレイン電流・ゲート電圧 (Id-Vg) 特性を示す。P-ch TFT では 0V 以上のゲート電圧で、N-ch TFT では -0.2V 以下のゲート電圧でのドレイン電 流、すなわち off 電流は 10⁻⁷ μ A とノイズ レベル程度である。これは、硝酸酸化膜 は 1.4nm と極薄であるがリーク電流を効 果的に遮断しているためである。また、 ドレイン電流はゲート電圧の増加に伴っ て急峻な立ち上がりを示しており、以下 に示す sub-threshold swing (S 値) が小 さいことがわかる。

図 37 に、1.4nm 共沸硝酸酸化膜/10 nm CVD SiO₂ 膜のスタックゲート構造を持 つ TFT の S 値を示す。S 値とは、図 36

図 35 1.4nm 共沸硝酸酸化膜/10 nm CVD SiO₂ 膜のスタックゲート構 造を持つ TFT の Id-Vds 曲線

に示すドレイン電流を一桁増加するために必要なゲート電圧の増加分で定義される。S値は、 N-ch TFT では 70~80mV/dec、P-ch TFT では約 70/dec と室温での理論値 60mV/dec に近 い値であった。このように良好な S値は、1)ゲート酸化膜厚が 10nm と極薄である、2) 界面準位密度が低いためである。1)、2)が満たされている場合、ゲート電圧は有効にシリコ ンに印加されそのバンドベンディングが変化する結果、ドレイン電流が大きく増加する。

図 36 1.4nm 共沸硝酸酸化膜/10 nm CVD SiO₂ 膜のスタックゲート構 造を持つ TFT の Id-Vgs特性

図 38 1.4nm 共沸硝酸酸化膜/10 nm CVD SiO2膜のスタックゲート構造を持つ TFT のオン電流に対するオフ電流のプロット

図 38 に、1.4nm 共沸硝酸酸化膜/10 nm CVD SiO₂膜のスタックゲート構造を持つ TFT のオフ電流とオン電流の関係を示す。青色で示したプロットは、硝酸酸化膜を持たない TFT のオフ電流とオン電流の関係である。硝酸酸化膜を形成することによって、P-ch TFT では オフ電流が約一桁、N-ch TFT では約二桁低減していることがわかる。このように、低いオ フ電流を持つ結果、上に示したように 10⁹ という大きな on/off 比が得られている。硝酸酸化 膜が効果的にリーク電流を遮断していることによって得られている結果である。

図 39 に、1.4nm 共沸硝酸酸化膜/ 10 nm CVD SiO₂ 膜のスタックゲー ト構造を持つ TFT のチャネル移動 度を示す。N-ch TFT のチャネル移 動度は 100~150cm²/Vs、P-ch TFT のチャネル移動度は約 100cm²/Vs とかなり大きいものであった。硝 酸酸化膜の良好な界面特性、特に 小さな界面準位密度は、大きな チャネル移動度に貢献しているも のと思われる。

> (2)研究成果の今後期待される 効果

以上示したように、硝酸酸化法を TFT に応用することによって、超低消費電 力化と微細化を達成することに成功し た。ここで用いた硝酸酸化膜/CVD 酸 化膜スタックゲート構造 TFT は液晶デ バイスのみならず、シリコン基板を用い ない安価な基板を用いた高機能集積 回路の創製に応用可能である。また、 その低電圧高性能 TFT の特徴を生か して、有機 EL 駆動用 TFT にも展開で きる。ポリシリコン TFT 以外にも、SiC

 図 39 1.4nm 共沸硝酸酸化膜/10 nm CVD SiO₂ 膜のスタックゲート構造を持つ TFT のチャネル移動度

を用いるパワーデバイスや高周波デバイス、に広く応用でき、その良好な界面特性によってこれら 半導体デバイスの高性能化を行うことができる。

10.メモリ・CPU 内蔵の超低消費電力 SDOG の研究開発(シャープ今井グループ) 10-1.システムディスプレイの超低消費電力化の研究開発(シャープ今井グループ、大阪大学小 林グループ))

(1) 実施内容及び成果

システムディスプレイの超低消費電力化のために、CMOS 回路構成を基本として、マルチドライ バ機能と表示リフレッシュ制御の低周波数化に取り組み、図 40 に示すように、マルチドライバ機能 と表示リフレッシュ制御の両効果により、消費電力を 1/9(従来比)まで低減、そして、これら機能を

図 40 マルチドライバ機能とリフレッシュレート制御モードの利用 による低消費電力化の効果実証

備えた 3V 動作の2型 QVGA TFT パネル基板の基本設計を行った。

以上を踏まえ、図 41 に示す 2 型 QVGA TFT 実パネルの 3V 動作版と15V 動作版の回路設計、マスク設計、パネル試作を行った。これらのパネルの実動作(回路、表示)を目指し、TFT 基板 試作ラインの設計ルールとの適合性検証とその試作、入手可能な低電圧液晶材料を用いて液晶 モジュールの試作、その評価用システムの設計・製作を行い、TFT 回路、液晶表示の何れについ ても実機(デモシステム I)で 3V 回路完全動作と絵出しに成功した。最終年度の研究成果報告会 にて、図 42 に示すように、その実機デモを行った。

デモシステム I: 硝酸酸化法を適用した 3V 動作超低消費電力液晶パネル

【ディスプレイ仕様】

- ・ 画面 サイズ: 2.0 型透過型
- ・解像度:QVGA(320×RGB×240 ドット)
- ・画素ピッチ:43×129 (µm)
- ・駆動方式:マルチドライバ+低リフレッシュレート
- ・消費電力:従来の1/250以下(回路部分) 低駆動電圧化により1/25以下、新規駆動回路採用により1/10以下 ディスプレイとして表示動作させるためTFT動作電圧と見合う液晶材料を入手
- ・TFT ゲート絶縁膜構造:約 1.3 nm 硝酸酸化膜+CVD40nm 酸化膜の積層構造

【表示駆動回路仕様】

FPGA+ディスクリート回路による機能検証レベル

図 41 2型 QVGA パネル/TEG レイアウト (3V、15V 混載)

図 42 デモシステム I (硝酸酸化法を適用した 3V 動作液晶パネルの実動作)

(2) 成果の今後期待される効果

今回の試作により、TFTパネル回路の3Vの低電圧化の可能性、既存の低電圧液晶材料を用い 低コントラストながらも表示を実証できた。今後、液晶材料の開発が進み、回路に見合う低電圧化 が行われると、消費電力重視の携帯機器用ディスプレイとして市場に浸透していくことが期待され る。

10-2. 超低消費電力化の画素メモリの研究・開発(シャープ今井グループ)

(1)研究実施内容及び成果

従来の液晶ディスプレイの画素部は、TFT とキャパシタで構成され、ホスト側からパネ ル側に表示データを周期的に転送する必要があった。この表示データ転送のトラフィック の低減に着目し、画素部にメモリを組み込み、セルフリフレッシュを実現させることで、 ホスト側データ転送回路を表示更新以外は停止させることで、更なる低消費電力が可能と なる。また、リフレッシュレートの低周波数化、表示モードを透過型から反射型にして、 バックライトの代わりに環境光を利用する技術も用いれば、大きく低消費電力化を低減さ せることが可能となる。以上を踏まえ、図 43 に示す表示システム全体を太陽電池からの給 電で賄う実機(デモシステム II)を製作し、低消費電力を実証、確認した。また、最終年 度の研究成果報告会にて、実機デモを行った。

デモシステムⅡ:画素メモリを搭載した反射型超低消費電力液晶パネル

- 【ディスプレイ仕様】
 - ・画面サイズ: 1.35型モノクロ反射型
 - ・解像度:96×96 ドット
 - ・新たな低消費電力駆動アーキテクチャ(回路部分)
 パネル内部(画素)メモリ+低リフレッシュ駆動+低駆動電圧モノクロ液晶材料
 - ・パネルに周辺回路を内蔵し、ホストとシンプル I/F
 - ・パネル消費電力 < 1 mW
- 【表示駆動回路仕様】
 - ・ワンチップマイコン:汎用 I/O ポート+ソフトウェア
 - ・ 消費電力低減:表示更新時のみ表示データ転送
 - ・ホスト I/F 外部からのデータ受信表示
- 【システム電源仕様】
 - ・太陽電池パネルによるスタンドアロン動作

図 43 デモシステムⅡ(画素メモリを搭載した反射型超低消費電力液晶パネル)

(2) 研究成果の今後期待される効果

システムアーキテクチャ上の低消費電力化のアプローチとして、パネルの画素毎にメモリを持た せるディスプレイにより、表示システム全体の消費電力を大きく抑え、太陽電池で電力を賄える可 能性を今回の試作で確認できた。ディスプレイの回路素子(TFT)を硝酸酸化法により高性能化す ることで、更なる小型携帯情報端末用に低消費電力化が可能となる。また、太陽電池で電力が賄 える大画面ディスプレイに発展させることで、デジタルサイネージへの応用が期待される。

§5 成果発表等

(1) 原著論文発表(国内(和文) 0件、国際(欧文)誌55件)

- 1. K. Imamura, O. Maida, K. Hattori, M. Takahashi, and H. Kobayashi, Low temperature formation of SiO₂/Si structure by nitric acid vapor, J. Appl. Phys. **100**, 114910-1-114910-4 (2006).
- 2. Osamu Maida, Ken-ichi Fukayama, Masao Takahashi, Hikaru Kobayashi, Young-Bae Kim, Hyun-Chul Kim, and Duck-Kyun Choi, Interface states for HfO₂/Si structure observed by XPS measurements under bias, Appl. Phys. Lett. **89**(18) 122112-1-122112-3 (2006).
- 3. S.-S. Im, M. Takahashi, and H. Kobayashi, Room temperature formation of silicon oxynitride/silicon structure by use of electrochemical method, J. Appl. Phys. **100**, 044101-1-5 (2006).
- 4. Y.-L. Liu, M. Takahashi, and H. Kobayashi, Mechanism of Ni removal from Si materials by use of hydrogen cyanide aqueous solutions, J. Electrochem. Soc. **153**(5), G394-G398 (2006).
- 5. Asuha, S.-S. Im, M. Tanaka, S. Imai, M. Takahashi, and H. Kobayashi, Formation of 10~30 nm SiO₂/Si structure with a uniform thickness at ~120 °C by nitric acid oxidation method, Surf. Sci. **600**, 2523-2527 (2006).
- 6. N. Fujiwara, Y.-L. Liu, M. Takahashi, and H. Kobayashi, Mechanism of copper removal from SiO₂ surfaces by hydrogen cyanide aqueous solutions, J. Electrochem. Soc. **153** (5), G394-G398 (2006).
- 7. Y.-L. Liu, N. Fujiwara, H. Iwasa, M. Takahashi, S. Imai, and H. Kobayashi, Reaction of cyanide ions with copper on Si surfaces and its use for Si cleaning, Surf. Sci. **600**, 1165-1169 (2006).
- H. Kobayashi, Asuha, S.-S. Im, S. Imai, and M. Takahashi, Nitric acid oxidation of Si method for the formation of high quality Si/SiO₂ structure at ~120 °C, AJAM, 104-108 (2006).
- H. Kobayashi, Y.-L. Liu, A. Asano, Y. Yamashita, J. Ivanco, and M. Takahashi, Methods of observation and elimination of semiconductor defect states, Solar Energy, 80, 645-652 (2006).
- 10. H. Kobayashi, T. Sakurai, Y. Yamashita, T. Kubota, O. Maida, and M. Takahashi, A method of observation of low density interface states by means of X-ray photoelectron spectroscopy under bias and passivation by cyanide ions, Appl. Surf. Sci. **252**, 7700-7712 (2006).
- 11. E. Pincik, H. Kobayashi, J. Rusnak, M. Takahashi, R. Brunner, M. Jergel, Passivation of Si and a-Si:H surfaces by thin oxide and oxy-nitride layers, Appl. Surf. Sci. 252 7713-7721 (2006).
- 12. S. Imai, M. Fujimoto, Asuha, M. Takahashi, and H. Kobayashi, Formation of atomically smooth SiO₂/SiC interfaces at ~120 °C by use of nitric acid oxidation method, Surf. Sci. **600**, 547-550 (2006).
- 13. M. Takahashi, Y.-L. Liu, N. Fujiwara, H. Iwasa, and H. Kobayashi, Silicon cleaning and defect passivation effects of hydrogen cyanide aqueous solutions, Solid State Commun. **137**, 263-267 (2006).
- 14. E. Pincik, H. Kobayashi, R. Hajossy, H. Gleskova, M. Takahashi, M. Jergel, R. Brunner, L. Ortega, M. Kucera, M. Kral, and J. Rusnak, On interface properties of ultra-thin and very-thin oxide/a-Si:H structures prepared by oxygen based plasmas and chemical oxidation, Appl. Surf. Sci. **253**, 6697-6715 (2007).
- 15. E. Pincik, H. Kobayashi, M. Takahashi, R. Brunner, S. Jurecka, and J. Rusnak, On formation of thin SiO₂/a-Si:H interface when biased oxidized semiconductor surface interacts with plasma or liquid solution, Cent. Eur. J. Phys. **5**(3), 428-445 (2007).
- 16. S. Mizushima, S. Imai, Asuha, M. Tanaka, and H. Kobayashi, Nitric acid method for fabrication of gate oxides in TFT, Appl. Surf. Sci. 254, 3685-3689 (2008).

- M. Madani, Y.-L. Liu, M. Takahashi, H. Iwasa, and H. Kobayashi, SiC cleaning method by use of dilute HCN aqueous solutions, J. Electrochem. Soc. 155(11) H895-H898 (2008).
- 18. W.-B. Kim, Asuha, T. Matsumoto, and H. Kobayashi, Ultrathin SiO₂ layer on atomically flat Si(111) surfaces with excellent electrical characteristics formed by nitric acid oxidation method, Appl. Phys. Lett. **93**, 072101-1-3 (2008).
- E. Pincik, H. Kobayashi, R. Brunner, M. Takahashi, Yueh-Ling Liu, K. Imamura, M. Jergel, and J. Rusnák, Passivation of defect states in Si-bnased and GaAs structures, Appl. Surf. Sci. 254, 8059-8066 (2008).
- 20. H. Kobayashi, K. Imamura, K. Fukayama, S.-S. Im, O. Maida, Y.-B. Kim, H.-C. Kim, and D.-K. Choi, Complete prevention of reaction at HfO₂/Si interfaces by 1 nm silicon nitride layer, Surf. Sci. **602**, 1948-1953 (2008).
- 21. S. Imai, S. Mizushima, Asuha, W.-B. Kim, and H. Kobayashi, Properties of thick SiO₂/Si structure formed at 120°C by use of two-step nitric acid oxidation method, Appl. Surf. Sci. **254**, 3685-3689 (2008).
- 22. H. Narita, M. Takahashi, H. Iwasa, and H. Kobayashi, Complete removal of copper contaminants on bare silicon surfaces by use of HCN aqueous solutions, J. Electrochem. Soc. 155(2), H103-H107 (2008).
- M. Takahashi, S.-S. Im, M. Madani, and H. Kobayashi, Nitric acid oxidation of 3C-SiC to fabricate MOS diodes with a low leakage current density, J. Electrochem. Soc. 155(1), H47-51 (2008).
- 24. S.-S. Im, S. Terakawa, H. Iwasa, and H. Kobayashi, Nitric Acid Oxidation Method to Form SiO₂/3C-SiC Structure at 120 °C, Appl. Surf. Sci. **254**, 3667-3671 (2008).
- 25. M. Takahashi, Y.-L. Liu, H. Narita, and H. Kobayashi, Si cleaning method without surface morphology change by cyanide solutions, Appl. Surf. Sci. **254**, 3715-3720 (2008).
- 26. E. Pincik, R. Brunner, H. Kobayashi, M. Takahashi, and M. Kucera, Photoluminescence of very thin oxide/a-Si:H structures passivated in HCN solutions, Appl. Surf. Sci. **254**, 3710-3714 (2008).
- 27. H. Tsuji, Y. Kamakura, and K. Taniguchi, Extraction of the Density of Interface Trap States in Thin-Film Transistors, ECS Transactions **16**, 73-77 (2008).
- 28. K. Imamura, M. Takahashi, S. Imai, and H. Kobayashi, Band alignment of SiO₂/Si structure formed with nitric acid vapor below 500°C, Surf. Sci. **603**(7), 968-972 (2009).
- 29. M. Takahashi, T. Shishido, H. Iwasa, and H. Kobayashi, Passivation of defect states in surface and edge regions on pn-junction Si solar cells by use of hydrogen cyanide solutions, Cent. Eur. J. Phys. **7**(2), 227-231 (2009).
- 30. T. Matsumoto, Asuha, W.-B. Kim, M. Yamada, S Imai, S. Terakawa, and H. Kobayashi, Low temperature formation of SiO₂ thin films by nitric acid oxidation of Si (NAOS) and application to thin film transistor (TFT), Microelectron. Eng. 86, 1939-1941 (2009).
- 31. P. Bury, H. Kobayashi, M. Takahashi, K. Imamura, P. Sidor, and F. Cermobila, Acoustic spectroscopy and electrical characterization of SiO₂/Si structures with ultrathin SiO₂ layers formed by nitric acid oxidation, Cent. Eur. J. Phys. 7(2), 237-241 (2009).
- 32. S. Jurecka, M. Jureckova, F. Chovanec, H. Kobayashi, M. Takahashi, M. Mikula, and E. Pincik, On the tpographic and optical properties of SiC/SiO₂ surface, Cent. Eur. J. Phys. 7(2), 321-326 (2009).
- 33. E. Pincik, H. Kobayashi, R. Brunner, M. Takahashi, J. Rusnak, and M. Jergel, On similar electrical, optical and structural properties of MOS structures prepared on a-Si:H/c-Si, porous silicon/c-Si, and c-Si, Mater. Sci. Forum **609**, 11-25 (2009).
- 34. J. Rusnak, M. Ruzinsky, K. Imamura, T. Matsumoto, M. Stefecka, M. Takahashi, H. Kobayashi, and E. Pincik, Investigation of deep interface traps in very-thin oxide/Si

structures prepared at low temperatures using chemical solutions, Mater. Sci. Forum **609**, 123-127 (2009).

- S. Jurecka, H. Kobayashi, M. Takahashi, R. Brunner, M. Madani, and E. Pincik, On topographic properties of semiconductor surfaces and thin film systems, Mater. Sci. Forum 609, 275-279 (2009).
- 36. W.-B. Kim, T. Matsumoto, and H. Kobayashi, Ultrathin SiO₂ layer with an extremely low leakage current density formed in high concentration nitric acid, J. Appl. Phys. **105**, 103709-1-6 (2009).
- 37. R. Brunner, H. Kobayashi, M. Kucera, M. Takahashi, J. Rusnak, and E. Pincik, Photoluminescence of passivated a-Si:H, Mater. Sci. Forum **609**, 281-285 (2009).
- 38. H. Tsuji, Y. Kamakura, and K. Taniguchi, Simple Extraction Method of Interface Trap Density in Thin-Film Transistors, J. Electrochem. Soc. **156**, H430-H433 (2009).
- 39. H. Seo, Y.-B. Kim, G. Lucovsky, I.-D. Kim, K.-B. Chung, H. Kobayashi, D.-K. Choi, Enhanced leakage current properties of Ni-doped Ba_{0.6}Sr_{0.4}TiO₃ thin films driven by modified band edge state, J. Appl. Phys. **107**, 024109/1-7 (2010).
- K. Imamura, M. Takahashi, Asuha, Y. Hirayama, S. Imai, and H. Kobayashi, Nitric acid oxidation of SI method at 120 °C: HNO₃ concentration dependence, J. Appl. Phys. 107(5), 054503-1-5 (2010).
- 41. W.-B. Kim, M. Nishiyama, and H. Kobayashi, Removal of charging on SiO₂/Si structure during photoelectron spectroscopy measurements by metal overlayer, J. Electron Spectroscopy Related Phenom. **176**, 8-12 (2010).
- 42. T. Yanase, M. Matsumoto, and H. Kobayashi, SiO₂/Si structure having low leakage current fabricated by nitric acid oxidation method with Si source, Electrochem. Solid-State Lett. **13** (7), H253-H256 (2010).
- 43. Y. Fukaya, T. Yanase, Y. Kubota, S. Imai, T. Matsumoto, and H. Kobayashi, Low temperature fabrication of 5~10 nm SiO₂/Si structure using advanced nitric acid oxidation of silicon (NAOS) method, Appl. Surf. Sci. **256**, 5610-5613 (2010).
- 44. S. Jurecka, H. Kobayashi, M. Takahashi, T. Masumoto, M. Jureckova, F. Chovanec, and E. Pincik, On the influence of the surface roughness onto the ultrathin SiO₂/Si structure properties, Appl. Surf. Sci. **256**, 5623-5628 (2010).
- 45. P. Hockicko, P. Bury, P. Sidor, H. Kobayashi, M. Takahashi, and T. Yanase, Analysis of A-DLTS spectra of MOS structures with thin NAOS SiO₂, Cent. Eur. J. Phys. **9**, 242-249 (2010).
- 46. R. Brunner, E. Pincik, H. Kobayashi, M. Kucera, M. Takahashi, and J. Rusnak, On photoluminescence properties of a-Si:H-based structures, Appl. Surf. Sci. 256, 5596-5601 (2010).
- 47. E. Pincik, H. Kobayashi, J. Rusnak, W. B. Kim, R. Brunner, L. Malinovsky, T. Matsumoto, K. Imamura, M. Jergel, M. Takahashi, Y. Higashi, M. Kucera, and M. Mikula, On ultra-thin oxide/Si and very-thin oxide/Si structures prepared by wet chemical process, Appl. Surf. Sci. 256, 5757-5764 (2010).
- 48. H. Kobayashi, K. Imamura, W.-B. Kim, S.-S. Im, and Asuha, Nitric acid oxidation of Si (NAOS) method for low temperature fabrication of SiO₂/Si and SiO₂/SiC structures, Appl. Surf. Sci. **256**, 5744-5756 (2010).
- T. Iwata, M. Matsumoto, S. Terakawa, and H. Kobayashi, Fabrication of Al₂O₃/Al structure by nitric acid oxidation at room temperature, Cent. Eur. J. Phys. 8, 1015-1020 (2010).
- 50. W.-B. Kim, T. Matsumoto, and H. Kobayashi, Ultrathin SiO₂ layer with a low leakage current density formed with ~ 100 % nitric acid vapor, Nanotechnology **21**, 115202-1-8 (2010).
- 51. T. Matsumoto, Y. Kubota, M. Yamada, H. Tsuji, T. Shimatani, Y. Hirayama, S. Terakawa, S. Imai, and H. Kobayashi, Ultra-low power TFT with gate oxide fabricated by nitric acid oxidation method, IEEE Electron Device Lett. **31**, 821-823 (2010).

- 52. H. Tsuji, Y. Kamakura, and K. Taniguchi, Drain current model for thin-film transistors with interface trap states, J. Appl. Phys. **107**, 034502/1-5 (2010).
- 53. H. Tsuji, Y. Kamakura, and K. Taniguchi, Capacitance Model for Thin-Film Transistors with Interface Traps, ECS Transactions **33**, 105-109 (2010).
- 54. T. Fukushima, A. Ohnaka, M. Takahashi, H. Kobayashi, Fabrication of low reflectivity poly-crystalline Si surfaces by structure transfer method, Electrochem. Solid-State Lett., **14**, B13-B15 (2011).
- 55. Y. Kubota, T. Matsumoto, S.Imai, M. Yamada, H. Tsuji, K. Taniguchi, S. Terakawa, H. Kobayashi, Sub-micrometer ultralow power TFT with 1.8 nm NAOS SiO₂/20 nm CVD SiO₂ gate stack structure, IEEE Trans. Electron Dev., **58**, 1134-1140 (2011).
- 56. T. Matsumoto, Y. Kubota, S. Imai, H. Kobayashi, Nitric Acid Oxidation to Form a Gate Oxide Layer in Sub-Micrometer TFT, ECS Transactions, accepted

(2)その他の著作物(総説、書籍など)

- 1. 葛岡毅, 辻博史, 桐原正治, 鎌倉良成, 谷口研二, Poly-Si TFT における容量-電圧特性の シミュレーションによる解析, IEICE Technical Report **107**, 15-18 (2007).
- 2. 高橋昌男,小林光,シリコン材料表面の金属除去用新洗浄溶液,クリーンテクノロジー, 18(10), 42-46 (2008).
- 3. 松本健俊, アスハ, 今村健太郎, 小林光, 硝酸溶液を用いた Si 表面上への SiO2 酸化薄膜 の低温形成と酸化膜の電気特性評価, 表面科学 29, 498-502 (2008).
- 4. 辻博史, 鎌倉良成, 谷口研二, 表面ポテンシャルを用いた薄膜トランジスタのドレイン 電流モデル, IEICE Technical Report **109**, 19-22 (2009).
- 5. 鎌倉良成, 日昔崇, 辻博史, 谷口研二, Poly-Si TFT におけるゲート酸化膜へのホットホ ール注入と捕獲/放出特性の評価, IEICE Technical Report **109**, 35-38 (2009).
- 6. 小林 光, 青酸を利用した新発想の半導体洗浄技術, 化学, **65**(8), 77 (2010).

(3)国際学会発表及び主要な国内学会発表

- ① 招待講演 (国内 4件、国際 33件)
- H. Kobayashi(大阪大学), H. Narita, Y.-L. Liu, and M. Takahashi, Improvement of Si solar cell characteristics by use of new semiconductor defect passivation method, 2005' Qingdao International Formum for New Energy Materials an Technology Application, pp.24-33, Qingdao, China, Nov.24-27, 2005.
- 2. H. Kobayashi(大阪大学), Asuha, M. Tanakal, S. Lmai, and M. Takahashi, Low temperature formation of SiO₂/Si structure by useof nitric acid oxidation method and its application to thin film, 7th International Symposium on Eco-Materials Processing and Design, Chengdu, China, Jan. 8-11, 2006.
- 3. H. Kobayashi(大阪大学), Nitric Acid oxidation of Si method for low temperature fabrication of Si/SiO₂ structure and its application to semiconductor, International Congress on Materials Science and Engineering 2006 (CISGM4), Algeria, May 2-4, 2006.
- 4. M. Takahashi(大阪大学), Si defect passivation and cleaning method by use of new chemistry, International Congress on Materials Science and Engineering 2006 (CISGM4), Algeria, May 2-4, 2006.
- 5. 小林 光(大阪大学)、第10回関西半導体解析技術研究会、新規半導体化学プロセスの開発と半導体デバイスの高性能化、門真、2006年5月19日.
- 6. H. Kobayashi(大阪大学), Two-step nitric acid oxidation of Si and SiC (NAOS) method for the formation of SiO₂/Si and SiO₂/SiC structures at 120 °C, 5th Solid State Surfaces and Interfaces, Slovak Republic, Nov. 19-24, 2006.
- 7. M. Takahash(大阪大学)i, Semiconductor surface cleaning and passivation by the

chemical treatment in solutions of hydrogen cyanide, 5th Solid State Surfaces and Interfaces, Slovak Republic, Nov. 19-24, 2006.

- 8. H. Kobayashi(大阪大学), Two-step nitric acid oxidation of Si and SiC (NAOS) method for the formation of SiO₂/Si and SiO₂/SiC structures at 120 °C, 5th Solid State Surfaces and Interfaces, Slovak Republic, Nov. 19-24, 2006.
- 9. M. Takahashi(大阪大学), Semiconductor surface cleaning and passivation by the chemical treatment in solutions of hydrogen cyanide, 5th Solid State Surfaces and Interfaces, Slovak Republic, Nov. 19-24, 2006.
- 10. H. Kobayashi(大阪大学), New defect passivation method for solar cells, The 8th International Symposium on Eco-Materials Processing and Design, Kitakushu, Japan, Jan. 11-14, 2007.
- 11. 小林 光(大阪大学)、LSI 作製に関わる革新的技術、世界と共に発展するための中核技術、IMAGINE セミナー、大阪、2007 年 3 月 8 日~9 日.
- 12. H. Kobayashi(大阪大学), Asuha, T. Mastsumoto, and M. Takahashi, Osaka University, Nitric acid oxidation of Si and SiC for the low temperature fabrication of MOS structure, 5th International Workshop on Semiconductor Surface Passivation, Zakopane, Poland, Sep. 16-19, 2007.
- 13. E. Pinčík(スロバキア科学アカデミー), H. Kobayashi, R. Brunner, M. Takahashi, Y.-L. Liu, K. Imamura, and J. Rusnák, On formation and passivation of defect states in Si- and GaAs-based semiconductor structures, 5th International Workshop on Semiconductor Surface Passivation, Zakopane, Poland, Sep. 16-19, 2007.
- 14. M. Takahashi(大阪大学), Y.-L. Liu, and H. Kobayashi, Surface chemistry in Si cleaning with cyanide solutions, 5th International Workshop on Semiconductor Surface Passivation, Zakopane, Poland, Sep. 16-19, 2007.
- 15. H. Kobayashi(大阪大学), M. Takahashi, and H. Iwasa, Defect passivation etch-less cleaning for semiconductor devices: Zero emission process. International Symposium on Advanced Ceramics and Technology for Sustainable Energy Applications, Pingtung, Taiwan, Nov. 4-7, 2007.
- 16. H. Kobayashi(大阪大学), Improvement of solar cell and MOS characteristics by new defect passivation and metal removal method, 9th International Symposium on Eco-materials Processing and Design, Masan, Korea, Jan. 10-14, 2008.
- Y. Kamakura(大阪大学), Y. Kishida, T. Kuzuoka, H. Tsuji, S. Ikeda, Y. Shimizu, M. Kirihara, M. Morifuji, Y. Uraoka, and K. Taniguchi, "Simulation and Modeling for Small Signal AC Properties of Poly-Si TFTs (Invited)," 2007 The Fourteenth International Workshop on Active-Matrix Flatpanel Displays and Devices —TFT Technologies and Related Materials— (July 11–13, 2007) Hyogo, Japan.
- 18. H. Kobayashi(大阪大学), Nitric acid oxidation of Si at 120°C to fabricate MOS Structure with excellent electrical characteristics, 1st International Conference on Thin Films and Porous Materials, Zeralda, Algiers, May 19-22, 2008.
- 19. M. Takahashi(大阪大学), Surface cleaning and defect passivation by the use of cyanide solutions, 1st International Conference on Thin Films and Porous Materials, Zeralda, Algiers, May 19-22, 2008.
- 20. 小林 光(大阪大学),シリコン系太陽電池の欠陥制御と高効率化,日本化学会東京講演 会,東京,2008年6月27日.
- 21. H. Kobayashi(大阪大学), Low temperature nitric acid oxidation of Si (NAOS) for fabrication of gate oxides in LSI and TFT, The 1st International Symposium on Hybrid Materials and Processing, Busan, Korea, Oct. 27-29, 2008.
- 22. H. Kobayashi(大阪大学), One-step and two-step NAOS methods for fabrication of SiO₂/Si structure with excellent electrical characteristics, 6th Solid State Surfaces and Interfaces, Smolenice, Slovakia, Nov. 24-27, 2008.
- 23. M. Takahashi(大阪大学), Passivation of defect states in surfaces and edge regions on

pn-junction Si solar cells by use of hydrogen cyanide solutions, 6th Solid State Surfaces and Interfaces, Smolenice, Slovakia, Nov. 24-27, 2008.

- 24. H. Kobayashi(大阪大学), T. Matsumoto, M. Yamada, S. Terakawa, S. Imai, Nitric acid oxidation of Si (NAOS) method for fabrication of ultra-low power thin film transistors, New Processing and Nanostructure/property Relationship for Multi Functional Materials, Awaji, Japan, Dec. 14-16, 2008.
- 25. H. Kobayashi (大阪大学), Defect passivation etch-less cleaning method for improvement of Si solar cell characteristics, The 6th International Conference on High-Performance Ceramics, Harbin, China, Aug. 16-19, 2009.
- 26. H. Kobayashi (大阪大学), Nitric acid oxidation of Si method for fabrication of Si/SiO₂ structure at 120°C and its application to thin film transistors, VI International Workshop on Semiconductor Surface Passivation, Zakopane, Poland, Sep. 13-16, 2009.
- 27. M. Takahashi (大阪大学), Semiconductor surface cleaning by ppm order-defect passivation etchless solutions, VI International Workshop on Semiconductor Surface Passivation, Zakopane, Poland, Sep. 13-16, 2009.
- 28. H. Kobayashi (大阪大学), Defect Passivation Etch-less Cleaning for Semiconductor Devices: Zero Emission Process, International Symposium on Advanced Ceramics and Technology for Sustainable Energy Application, Taipei, Taiwan, Nov. 1-4, 2009.
- 29. H. Kobayashi (大阪大学), Nitric acid oxidation of Si (NAOS) method for the formation of gate oxides in TFT, Progress in Surface, Interface and Thin Film Science 2009, Florence, Italy, Nov. 16-19, 2009.
- 30. M. Takahashi (大阪大学), Local structures around nickel contaminants on SiO₂ surfaces and mechanism of nickel removal by dilute hydrocyanic acid aqueous solutions, Progress in Surface, Interface and Thin Film Science 2009, Florence, Italy, Nov. 16-19, 2009.
- 31. T. Matsumoto(大阪大学), T. Iwata. S. Terakawa and H. Kobayashi, Nitric acid oxidation of Al thin film to form Al₂O₃/Al structure at room temperature, Progress in Surface, Interface and Thin Film Science 2009, Florence, Italy, Nov. 16-19, 2009.
- 32. H. Kobayashi (大阪大学), Chemical methods to improve Si solar cell characteristics, China-Japan-Korea 2010 Strategic Seminor on New Materials, Huhhot, China, Aug. 25-29, 2010.
- 33. H. Kobayashi (大阪大学), M. Takahashi, T. Matsumoto, W.-B. Kim, New chemical methods improvement of Si solar cell performance, The 5th Meeting of the Saudi Physical Society, Abuha, Saudi Arabia, Oct. 25-27, 2010.
- 34. 小林 光(大阪大学)、表面・界面制御によるシリコン太陽電池の高効率化、応用物理学 会第 39 回薄膜・表面物理基礎講座、東京、2010 年 11 月 25 日.
- 35. H. Kobayashi (大阪大学), Improvement of Si solar cell performance by new chemical methods: surface passivation, defect elimination, metal removal, and surface structure transfer, 7th Solid State Surfaces and Interfaces, Smolenice, Slovakia, Nov. 22-25, 2010.
- 36. T. Matsumoto(大阪大学), M. Yamada, H. Tsuji, K. Taniguchi, Y. Kubota, S. Imai, S. Terakawa, H. Kobayashi, Characterization of ultra-low power thin film transistors (TFTs) with SiO₂ layer formed by the nitric acid oxidation of Si (NAOS) method, 7th Solid State Surfaces and Interfaces, Smolenice, Slovakia, Nov. 22-25, 2010.
- 37. S. Imai ($\checkmark \gamma \gamma$), K. Imamura, T. Matsumoto, H. Kobayashi, Application of nitric acid oxidation of Si (NAOS) method to fabricate of thin film transistors, 7th Solid State Surfaces and Interfaces, Smolenice, Slovakia, Nov. 22-25, 2010.
- ② 口頭講演 (国内 60 件、国際 11 件)
- 1. M. Takahashi(大阪大学), Y.-L. Liu, H. Narita, and H. Kobayashi, A new

semiconductor cleaning method by the use of defect passivation etchless cleaning solutions, 208th Meeting of The Electrochemical Society, Los Angeles, California, U.S.A., Oct. 16-21, 2005.

- 髙橋昌男(大阪大学),アスハ,田中祐士,岩佐仁雄,小林 光,硝酸酸化法による低温 生成 SiO₂ 膜の微構造,日本物理学会第 61 回年次大会,27aYB-4,松山,2006 年 3 月 27 日~30 日.
- M. Madani(大阪大学), Y.-L. Liu, S.-S. I, M. Takahashi, H. Kobayashi, Control of SiC surfaces by the annealing in a hydrogen gas and the immersion in solutions of HCN, 26回表面科学講演大会, 吹田, 2006年11月6日-9日.
- 4. 高橋昌男(大阪大学), 深山権一, 毎田 修, 小林 光, 電圧印加時の XPS 測定による HfO₂/SiON/Si構造の界面準位, 第67回応用物理学会学術講演会, 草津, 2006年8月 29日・9月1日.
- 5. 成田比呂晃(大阪大学), 劉 明伶, 髙橋昌男, 小林 光, 欠陥消滅型半導体洗浄液による bare Si 上の Cu 汚染の除去, 第 67 回応用物理学会学術講演会, 草津, 2006 年 8 月 29 日・9 月 1 日.
- 6. 任 星淳(大阪大学), 髙橋昌男, 小林 光, 水素処理による SiC 表面の平滑化と SiO₂/SiC 構造の特性向上, 第47回真空に関する連合講演会, 吹田, 2006 年 11 月 7 日 -9 日.
- 7. 劉 明伶(大阪大学),成田比呂晃,髙橋昌男,小林 光,シアン化物含有溶液による SiO₂薄膜上の極微量吸着 Ni の除去,第 25 回吸着分子の分光学的研究セミナー/第 7 回表面エレクトロニクス研究会,守山,2006年12月8日.
- 髙橋昌男(大阪大学),任 星淳,アスハ,小林 光,120℃の硝酸水溶液中での SiC 上 への酸化膜形成,粉体粉末冶金協会平成 18 年度秋季大会,吹田,2006 年 12 月 5 日-7 日.
- 9. 高橋昌男(大阪大学),成田比呂晃,劉 明伶,小林 光,欠陥消滅型半導体洗浄液による bare Si 上の Cu 汚染の除去(2)表面形態制御,第54回応用物理学関係連合講演会,相 模原,2007年3月27-30日.
- 10. 今村健太郎(大阪大学),深山権一,髙橋昌男,小林 光,低速電子衝撃法で形成した 1nm-SiN 層による HfO₂/Si 界面反応の完全防止,第54回応用物理学関係連合講演会, 相模原,2007年3月27-30日.
- 11. 高橋昌男(大阪大学), マダニモハマド, 任 星淳, アスハ, 小林 光, 硝酸酸化法で 形成した SiO₂/SiC 構造の表面・界面:水素処理の効果, 日本物理学会 2007 年春季大会, 鹿児島, 2007 年 3 月 18 日-21 日.
- 12. 高橋昌男(大阪大学), 劉 明伶, 宍戸 豪, 小林 光, 欠陥消滅型半導体洗浄液によるベアシリコン表面制御, 第68回応用物理学会学術講演会, 札幌, 2007年9月4日 ~8日.
- 13. 浦郷将英(大阪大学), 今村健太郎, 松本健俊, 髙橋昌男, 小林 光, 硝酸酸化法によ る多結晶シリコンの120°Cでの酸化とリッジ低減, 第68回応用物理学会学術講演会, 札幌, 2007年9月4日~8日.
- 14. 長山(大阪大学), 今村健太郎, 松本健俊, 髙橋昌男, 小林 光, 硝酸酸化法を用いて 120°C で形成した~10nm-SiO₂/Si 構造の物性と電気特性, 第 68 回応用物理学会学術 講演会, 札幌, 2007 年 9 月 4 日~8 日.
- 15. 宍戸 豪(大阪大学),高橋昌男,劉 玥伶,岩佐仁雄,小林 光,微少領域光電圧測 定による太陽電池の光電変換特性の評価,第68回応用物理学会学術講演会,札幌, 2007年9月4日~8日.
- 16. 高橋昌男(大阪大学),成田比呂晃,劉 玥伶,岩佐仁雄,小林 光, HCN 水溶液を用 いる bare Si 表面上の吸着 Cu 除去とそのメカニズム,第 27 回表面科学講演大会,東 京,2007 年 11 月 1 日~3 日.
- 17. 松本健俊(大阪大学), アスハ, 今村健太郎, 髙橋昌男, 小林 光, 共沸硝酸を用いた

Si 表面の低温酸化と酸化膜の電気特性,第27回表面科学講演大会,東京,2007年11月1日~3日.

- 18. 高橋昌男(大阪大学), 劉 明伶,成田比呂晃,小林 光, HCN 溶液によるシリコン表 面上の吸着銅の完全除去と表面形態制御,日本物理学会第 63 回年次大会,東大阪, 2008 年 3 月 22 日~26 日.
- 金 佑柄(大阪大学),松本健俊,小林 光,硝酸酸化法による低リーク電流を持つ極 薄SiO₂/Si(111)超平坦界面構造の創製,日本物理学会第63回年次大会,東大阪,2008 年3月22日~26日.
- 20. マダニ・モハマド(大阪大学), 髙橋昌男, 岩佐仁雄, 小林 光, 欠陥消滅型半導体洗 浄液と RCA 洗浄液による 4H-SiC 上の金属汚染の除去, 第 55 回応用物理学関係連合 講演会, 船橋, 2008 年 3 月 27 日~30 日.
- 金 佑柄(大阪大学),松本健俊,高橋昌男,小林 光,硝酸酸化法と水素処理で形成した低リーク電流の極薄 SiO₂/Si(111)構造,第55回応用物理学関係連合講演会,船橋,2008年3月27日~30日.
- 22. 松本健俊(大阪大学),長山,今村健太郎,髙橋昌男,小林 光,二段階硝酸酸化法に よる~10nm SiO₂/Si 構造の120 での創製,第55回応用物理学関係連合講演会,船橋, 2008年3月27日~30日.
- 23. 葛岡 毅(大阪大学), 辻 博史, 桐原 正治, 鎌倉良成, 谷口研二, Poly-Si TFT における 容量-電圧特性のシミュレーションによる解析, 電子情報通信学会 シリコン材料・デバ イス研究会(SDM), 奈良, 2007 年 12 月 14 日.
- 日昔 崇(大阪大学), 辻 博史, 鎌倉良成,谷口研二, 低温 Poly-Si TFT におけるリ ーク電流のヒステリシス特性, 第 55 回応用物理学関係連合講演会, 28a-G-7, 千葉, 2008 年 3 月 28 日.
- 25. 辻 博史(大阪大学), 日昔 崇, 葛岡 毅, 鎌倉 良成, 谷口 研二, 多結晶シリコン薄膜 トランジスタのモデリング, 応用物理学会 シリコンテクノロジー分科会 第 103 回研 究集会, 東京, 2008 年 7 月 11 日.
- 26. 金 佑柄(大阪大学),松本健俊,小林 光,98%硝酸で形成した低リーク電流を持つ 極薄 SiO₂/Si 構造,第 69 回応用物理学会学術講演会,愛知,2008 年 9 月 2 日~5 日.
- 27. 東 裕子(大阪大学), 髙橋昌男, 岩佐仁雄, 小林 光, 極低濃度欠陥消滅型半導体洗 浄液による SiO₂表面上の汚染 Cu の除去, 第 69 回応用物理学会学術講演会, 愛知, 2008 年 9 月 2 日~5 日.
- 28. 柳瀬 隆(大阪大学), 髙橋昌男, 松本健俊, 岩佐仁雄, 寺川澄雄, 小林 光, 新規の 硝酸法による SiO₂/Si 構造の低温形成, 日本物理学会 2008 年秋季大会, 岩手, 2008 年9月 20日~23日.
- 29. 高橋昌男(大阪大学),マダニ・モハマド,劉 明伶,岩佐仁雄,小林 光,HCN 水溶 液による 4H-SiC 表面上の吸着金属の完全除去,日本物理学会 2008 年秋季大会,岩手, 2008 年 9 月 20 日~23 日.
- 30. H. Tsuji(大阪大学), Y. Kamakura, and K. Taniguchi, Extraction of the Density of Interface Trap States in Thin-Film Transistors, Prime 2008 Joint International Meeting: the 214th ECS Meeting, and the 2008 Fall Meeting of ECSJ, Honolulu, Hawaii, Oct. 12-17 2008.
- W.-B. Kim(大阪大学), T. Matsumoto, and H. Kobayashi, Ultrathin SiO₂/Si(111) structure with low leakage current density formed by nitric acid oxidation method, International Symposium on Surface Science and Nanotechnology, Tokyo, Japan, Nov. 9-13, 2008.
- 32. M. Madani(大阪大学), Y.-L. Liu, M. Takahashi, H. Iwasan and H. Kobayashi, SiC cleaning method by use of dilute HCN aqueous solutions, International Symposium on Surface Science and Nanotechnology, Tokyo, Japan, Nov. 9-13, 2008.
- 33. M. Takahashi(大阪大学), Y. Higashi, H. Iwasa, and H. Kobayashi, Semiconductor

cleaning by use of hydrocyanic acid solutions with extremely low concentrations, International Symposium on Surface Science and Nanotechnology, Tokyo, Japan, Nov. 9-13, 2008.

- 34. P. Bury (ジリナ大学), H. Kobayashi, M. Takahashi, P. Sidor, and P. Hockicko, Acoustic spectroscopy of Si/SiO₂ structures with ultrathin SiO₂ layers formed with nitric acid oxidation, 6th Solid State Surfaces and Interfaces, Smolenice, Slovakia, Nov. 24-27, 2008.
- 35. 松本健俊(大阪大学),金 佑柄,長山,今村健太郎,髙橋昌男,小林 光,硝酸酸化法 と欠陥消滅型洗浄法を用いた新規半導体デバイスの開発,表面・界面スペクトロスコ ピー2008,大阪,2008年12月5~6日.
- 36. 東 裕子(大阪大学),高橋昌男,岩佐仁雄,小林 光,極低濃度欠陥消滅型半導体洗 浄液による SiO₂表面上の汚染 Cuの除去,表面・界面スペクトロスコピー2008,大阪, 2008 年 12 月 5~6 日.
- 37. 柳瀬 隆(大阪大学),松本健俊,小林 光,新規硝酸酸化法による低リーク電流をもつ SiO₂/Si 構造の低温形成,第 56 回応用物理学関係連合講演会,つくば,2009 年 3月 30 日~4月 2日.
- 38. 金 佑柄(大阪大学),松本健俊,小林 光,98%硝酸蒸気で形成した低リーク電流を 持つ極薄 SiO₂/Si 構造,第 56 回応用物理学関係連合講演会,つくば,2009 年 3 月 30 日~4 月 2 日.
- 39. 松本健俊(大阪大学),山田幹浩,長山,寺川澄雄,小林 光,短時間共沸硝酸酸化法 により Si(100)上に形成した低リーク電流をもつ極薄酸化膜,第 56 回応用物理学関係 連合講演会,つくば,2009年3月30日~4月2日.
- 40. 金 佑柄(大阪大学),西山雅祥,小林 光, SiO₂/Si 構造の Si 2p スペクトル:金属オ ーバーレイヤーによるチャージングの防止,第56回応用物理学関係連合講演会,つく ば,2009年3月30日~4月2日.
- 41. T. Matsumoto(大阪大学), W.-B. Kim, T. Yanase, Y. Fukaya, Asuha, M. Takahashi and H. Kobayashi (大阪大学産業科学研究所), Low temperature formation of SiO₂ thin films by nitric acid oxidation of Si (NAOS) and application to thin film transistor (TFT), INFOS2009, Cambridge, UK, Jun. 29-Jul. 1, 2009.
- 42. 高橋昌男(大阪大学),岩佐仁雄,小林光,希薄な欠陥消滅型半導体洗浄液による SiO₂ 表面上の汚染ニッケル除去反応,第70回応用物理学関係連合講演会,富山,2009年9 月8日~11日.
- 43. 松本健俊(大阪大学),山田幹浩,辻 博史,寺川澄雄,小林 光,硝酸酸化を用いたゲート絶縁膜の形成による薄膜トランジスタの低電圧化,第70回応用物理学関係連合講演会,富山,2009年9月8日~11日.
- 44. M.K. Mazumder(大阪大学), W.-B. Kim, Asuha, T. Matsumoto and H. Kobayashi, Low temperature formation of ultrathin SiO₂ films on Si surfaces for gate oxide of transistors by nitric acid oxidation of Si (NAOS) method, The 17th Conference of Crystal Growth and Epitaxy, Lake Geneva, USA, Aug. 10-13.
- 45.金 佑柄(大阪大学),松本健俊,小林光,98%硝酸で形成した低リーク電流を持つ極薄 SiO₂/Si 構造,2009 年秋季日本物理学会応用物理学会学術講演会,熊本,2009 年 9 月 25 日~28 日.
- 46. 岩田 隆(大阪大学),松本健俊,寺川澄雄,小林光,硝酸酸化法による Al₂O₃/Al 構造の室温形成,2009 年秋季日本物理学会応用物理学会学術講演会,熊本,2009 年 9 月 25 日~28 日.
- 47. 高橋昌男(大阪大学),東 裕子,劉 明伶,小林 光, HCN 水溶液による SiO₂表面の吸着 Ni 除去機構,2009 年秋季日本物理学会応用物理学会学術講演会,熊本,2009 年 9 月 25 日~28 日.
- 48. 東 裕子(大阪大学), 高橋昌男, 岩佐仁雄, 小林 光, 稀薄な HCN 水溶液を用いる SiO₂ 表面の汚染銅除去, 第 29 回表面科学会学術講演会, 東京, 2009 年 10 月 27 日~29

日.

- 49. 林 淳一(大阪大学), 辻 博史, 鎌倉良成, 中辻広志, 藤原正弘, 北角英人, 谷口研二, チャージポンピング法を用いた 2 重ゲート poly-Si 薄膜 p-i-n ダイオードのトラップ評価, 薄膜材料デバイス研究会第6回研究集会, 京都, 2009年11月2日~3日.
- 50. 辻 博史(大阪大学), 鎌倉良成, 谷口研二, 表面ポテンシャルを用いた薄膜トランジスタ のドレイン電流モデル, 応用物理学会 シリコンテクノロジー分科会 第 116 回研究集 会, 東京, 2009 年 11 月 12 日~13 日.
- 51. 鎌倉良成(大阪大学),日昔 崇,辻 博史,谷口研二,Poly-Si TFT におけるゲート酸化 膜へのホットホール注入と捕獲/放出特性の評価,電子情報通信学会シリコン材料・ デバイス研究会,奈良,2009年12月4日.
- 52. 太田俊史(大阪大学),林 淳一,辻 博史,鎌倉良成,谷口研二, Poly-Si TFT のターン オン過渡特性の評価とモデリング,第 57 回応用物理学関係連合講演会,神奈川, 2010年3月17日~20日.
- 53. 大仲亜由美(大阪大学),高橋昌男,岩佐仁雄,小林光,金属触媒作用によるシリコン 表面への構造転写と反射率の低減,第57回応用物理学関係連合講演会,神奈川,2010 年3月17日~20日.
- 54. 高橋昌男(大阪大学),東 裕子,岩佐仁雄,小林 光,ppm オーダの HCN 水溶液による SiO₂表面の汚染銅除去:銅の化学結合状態,第57回応用物理学関係連合講演会,神奈 川,2010年3月20日~23日.
- 55. 髙橋昌男(大阪大学),東裕子,成田比呂晃,岩佐仁雄,小林光,欠陥消滅型半導体洗 浄液によるシリコン材料表面の汚染除去:電子情報通信学会電子デバイス研究会,石 川,2010年3月17日~20日.
- 56. H. Kobayashi, New chemical method for improvement of Si solar cell efficiency, Nanofair 2010-Workshop "Commercialising Future Technologies for Energy and Energy Efficiency", Dresden, Germany, Jul. 7-8, 2010.
- 57. 松本健俊(大阪大学),山田幹浩,辻博史,モタハルマズンデル,寺川澄雄,今井繁規, 小林光,硝酸酸化薄膜を界面層に用いた 20 nm 積層型ゲート絶縁膜とサブミクロンの ゲート長を持つ超低消費電力型薄膜トランジスタの特性,第71回応用物理学会学術講 演会,長崎,2010年9月14日~17日.
- 58. 金佑柄(大阪大学), 松本健俊, 小林光, ~100%硝酸蒸気で形成した極薄 SiO₂/Si 構造 の界面特性, 第 71 回応用物理学会学術講演会, 長崎, 2010 年 9 月 14 日~17 日.
- 59. 深谷洋介(大阪大学),松本健俊,柳瀬隆,松本健俊,小林光,硝酸酸化(NAOS)法を 用いた比較的厚い(~6 nm)SiO₂ 膜の低温創製,第 71 回応用物理学会学術講演会, 長崎,2010 年 9 月 14 日~17 日.
- 60. 高橋昌男(大阪大学),東裕子,岩佐仁雄,小林光,HCN 水溶液による半導体表面清浄 化:10¹⁰ 原子/cm² オーダーの銅の化学状態解析,物理学会 2010 年秋季大会,大阪, 2010 年 9 月 23 日~26 日.
- 田中峻介,趙惠淑,松本健俊(大阪大学),岩佐仁雄,小林光,気相硝酸酸化法により低 温形成した SiO₂/Si 構造の物性と電気特性,物理学会 2010 年秋季大会,大阪,2010 年 9月 23 日~26 日.
- 62. 趙惠淑(大阪大学),松本健俊,岩佐仁雄,小林光,気相硝酸酸化法を用いた SiO₂/SiC 構造の低温創製,物理学会 2010 年秋季大会,長崎, 2010 年 9 月 23 日~26 日.
- 63. 松本健俊(大阪大学),山田幹浩,辻博史,谷口研二,久保田靖,今井繁規,寺川澄雄,小林光,硝酸酸化法により形成したゲート絶縁膜とこれを用いた超低消費電力サブミクロン薄膜トランジスタの特性評価,第30回表面科学学術講演会,大阪,2010年11月4日~6日.
- 64. 井川麻衣(大阪大学), 髙橋昌男, 小林光, 太陽電池裏面電極用アルミニウムのシリコン基板との反応性, 第 30回表面科学学術講演会, 大阪, 2010年11月4日~6日.
- 65. 太田俊史(大阪大学), 辻博史, 鎌倉良成, 谷口研二, Poly-Si TFT のオーバーシュート

電流の評価,薄膜材料デバイス研究会第7回研究集会,奈良,2010年11月5日~6日.

- 66. E. Pinčík(スロバキア科学アカデミー), H. Kobayashi, J. Rusnák, T. Matsumoto, M. Takahashi, R. Brunner, M. Jerger, 7th Solid State Surfaces and Interfaces, Smolenice, Slovakia, Nov. 24-27, 2008.
- 67. T. Matsumoto(大阪大学), M. Yamada, H. Tsuji, K. Taniguchi, Y. Kubota, S. Imai, S. Terakawa, H. Kobayashi, Ultra-low power TFTs with 10 nm stacked gate insulator fabricated by the nitric acid oxidation of Si (NAOS) method, 2010 International Electron Devices Meeting, San Francisco, US, Dec. 6-8, 2010.
- 68. 井川麻衣(大阪大学), 髙橋昌男, 小林光, 太陽電池電極用アルミニウムのシリコン基板との反応性, 第58回応用物理学関係連合講演会,神奈川, 2011年3月24日~27日.
- 69. 松本健俊(大阪大学)、山田幹浩、辻博史、谷口研二、久保田靖、今井繁規、寺川澄雄、小林光、硝酸酸化法を用いて形成した 10 nm の膜厚の積層型ゲート絶縁膜を持つ超低 消費電力型薄膜トランジスタの創製、第 58 回応用物理学関係連合講演会、神奈川、 2011年3月24日~27日.
- 70. 深谷洋介(大阪大学),松本健俊,小林光,新規二段階硝酸酸化法によるゲート酸化膜の低温創製,第58回応用物理学関係連合講演会,神奈川,2011年3月24日~27日.
- 71. F.C. Franco Jr.(大阪大学),金佑柄,小林光, Stability of Nitric Acid Oxidized Silicon Wafers Evaluated by Microwave Photoconductance Decay Spectroscopy,日本物理 学会大 66 回年次大会,新潟, 2011 年 3 月 25 日~28 日.
- ③ ポスター発表 (国内 13件、国際 34件)
- 1. S.-S. Im(大阪大学), M. Takahashi, and H. Kobayashi, Room temperature formation of silicon oxynitride/silicon structure by electrochemical method, The First International Workshop for R&D Clustering among China, Japan, Korea in Eco-materials Processing, Seoul, Korea, Nov. 10-13, 2005.
- 任 星淳(大阪大学),高橋昌男,アスハ,小林 光,硝酸酸化法により120°Cで創製したSiO₂/SiC構造の水素アニール,第53回応用物理学関係連合講演会,25a-P7-6,東京,2006年3月22日~26日.
- 3. M. Takahashi, (大阪大学) Asuha, K. Hattori, M. Tanaka, and H. Kobayash, Uniform SiO₂ layers formed by the nitric acid oxidation of silicon at low temperature, Symposium on hybrid nano materials toward future industries, Nagaoka, Japan, Feb. 3-5, 2006.
- 4. 今村健太郎(大阪大学),高橋昌男,服部研作,毎田 修,小林 光,硝酸蒸気による SiO₂/Si 構造の低温創製(1),第 67 回応用物理学会学術講演会,草津,2006 年 8 月 29 日-9 月 1 日.
- 5. 高橋昌男(大阪大学), 今村健太郎, 服部研作, 毎田 修, 小林 光, 硝酸蒸気による SiO₂/Si 構造の低温創製(2), 第 67 回応用物理学会学術講演会, 草津, 2006 年 8 月 29 日-9月1日.
- 6. R. Brunner (スロバキア科学アカデミー), E. Pinčík, H. Kobayashi, M. Takahashi, M. Kučera, and J. Rusnák, Photoluminescence of passivated a-Si:H, 5th International Workshop on Semiconductor Surface Passivation, Zakopane, Poland, Sep. 16-19, 2007.
- J. Rusnák(スロバキア科学アカデミー), E. Pinčík, M. Takahashi, R. Brunner, and M. Ružinský, New advanced charge version of deep level transient spectroscopy equipment and its application at investigation of passivated very thin oxide/silicon structures, 5th International Workshop on Semiconductor Surface Passivation, Zakopane, Poland, Sep. 16-19, 2007.
- 8. H. Kobayashi(大阪大学), S.-S. Im, M. Takahashi, and H. Nagasawa, Nitric acid oxidation of SiC for fabrication of 3C-SiC based MOS devices, International

conference on Silicon Carbide and Related Materials 2007, Otsu, Japan, Oct. 14-19, 2007.

- 9. 辻 博史(大阪大学), 葛岡 毅, 日昔 崇, 鎌倉 良成, 森藤 正人, 谷口 研二, "Poly-Si TFT におけるしきい値電圧のドレイン電圧依存性の解析," 薄膜材料デバイス研究会第 4回研究集会, 京都, 2007年11月2日-3日.
- 10. 桐原 正治(大阪大学), 池田 智, 鎌倉 良成, 谷口 研二, "デバイスのしきい値ばらつき に依らない差動増幅器," 薄膜材料デバイス研究会第4回研究集会, 京都, 2007年11月 2日-3日.
- 11. H. Kobayashi(大阪大学), Improvement of Si solar cell characteristics by new defect passivation method, 5th 21st Century COE "Towards Creating New Industries Based on Inter-Nanoscience" International Symposium, Awaji, Japan, Dec. 8-9, 2007.
- 12. M. Takahashi(大阪大学), S.-S. Im, Asuha, H. Kobayashi, Low temperature fabrication of 3C-SiC/SiO₂ MOS structures by nitric acid oxidation, 5th 21st Century COE "Towards Creating New Industries Based on Inter-Nanoscience" International Symposium, Awaji, Japan, Dec. 8-9, 2007.
- M. Madani(大阪大学), Y.-L. Liu, S.-S. Im, M. Takahashi, H. Kobayash, Improved Cleaning Method of SiC Using HCN Aqueous Solutions and 100 % H₂ Treatment, 5th 21st Century COE "Towards Creating New Industries Based on Inter-Nanoscience" International Symposium, Awaji, Japan, Dec. 8-9, 2007.
- 14. Y. Ishikawa(大阪大学), Asuha, S. Imai, Masao Takahashi, Hikaru Kobayashi, Low Temperature Oxidation of 4H-SiC by Use of Nitric Acid Oxidation Method, 5th 21st Century COE "Towards Creating New Industries Based on Inter-Nanoscience" International Symposium, Awaji, Japan, Dec. 8-9, 2007.
- 15. M. Takahashi(大阪大学), H. Narita, T. Shishido, H. Iwasa, and H. Kobayashi, Removal of copper adsorbates from silicon surfaces by the use of semiconductor cleaning solutions with capability of defect passivation, 11th SANKEN, 6th Nanotechnology Center, and 1st MSTEC International Symposium, Awaji, Japan, Feb. 2-4, 2008.
- 16. T. Himukashi(大阪大学), H. Tsuji, Y. Kamakura, and K. Taniguchi, Hysteresis Characteristics of Off-State Leakage Current in Poly-Si Thin Film Transistors, The 2008 International Meeting for Future of Electron Devices, Kansai, Osaka, Japan, May 22-23, 2008.
- 17. H. Tsuji(大阪大学), T. Kuzuoka, Y. Kamakura, and K. Taniguchi, Analysis and Modeling of Capacitance-Voltage Characteristics of Poly-Si TFTs using Device Simulation, 2008 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Hakone, Japan, Sep. 9-11 2008.
- 18. T. Matsumoto(大阪大学), Asuha, S. Imai, S. Mizushima, M. Takahashi, J. Rusnák, K. Imamura, E. Pinčík, H. Kobayashi, Nitric Acid Oxidation of Si (NAOS) to Improve Si device characteristics and Application to Thin Film Transistors, 4th Handai Nanoscience and Nanotechnology International Symposium, Osaka, Japan, Sep. 29-Oct. 1, 2008.
- 19. T. Himukashi(大阪大学), H. Tsuji, Y. Kamakura, K. Taniguchi, Mechanism of Hysteresis Characteristics of Off-State Leakage Current in Polycrystalline Silicon Thin-Film-Transistors, 4th Handai Nanoscience and Nanotechnology International Symposium, Osaka University, Osaka, Japan, Sep. 29-Oct. 1, 2008.
- 20. H. Tsuji(大阪大学), T. Kuzuoka, Y. Kamakura, K. Taniguchi, Analysis of Capacitance-Voltage Characteristics of Short-Channel Polycrystalline Silicon Thin-Film Transistors, 4th Handai Nanoscience and Nanotechnology International Symposium, Osaka University, Osaka, Japan, Sep. 29-Oct. 1, 2008.
- 21. 日昔 崇(大阪大学), 辻 博史, 鎌倉 良成, 谷口 研二, 低温 Poly-Si TFT のオフリーク 電流におけるヒステリシス特性とそのメカニズム, 薄膜材料デバイス研究会第5回研究

集会, 奈良, 2008年10月31日11月1日.

- 22. T. Matsumoto(大阪大学), W.B. Kim, J. Rusnák, K. Imamura, Asuha, S. Imai, E. Pinčík^{*} and H. Kobayashi, Low temperature formation of SiO₂/Si structures for LSI and TFT by nitric acid oxidation of Si (NAOS) method, International Symposium on Surface Science and Nanotechnology, Tokyo, Japan, Nov. 9-13, 2008.
- R. Brunner (スロバキア科学アカデミー), H. Kobayashi*, M. Kučera, M. Takahashi*, M. Jergel, and E. Pinčík, Non-Gaussian photoluminescence peaks of thin a-Si:H layers, 6th Solid State Surfaces and Interfaces, Smolenice, Slovakia, Nov. 24-27, 2008.
- 24. S. Imai $(\checkmark \lor \neg \neg)$, K. Imamura, H. Kobayashi, HNO₃ concentration dependence of electrical characteristics of SiO₂/Si structure formed by NAOS method, 6th Solid State Surfaces and Interfaces, Smolenice, Slovakia, Nov. 24-27, 2008.
- 25. M. Madani(大阪大学), Y.-L. Liu, M. Takahashi, H. Iwasa, and H. Kobayashi, SiC cleaning method by use of dilute HCN aqueous solutions, 6th Solid State Surfaces and Interfaces, Smolenice, Slovakia, Nov. 24-27, 2008.
- 26. E. Pinčík(スロバキア科学アカデミー), H. Kobayashi, R. Brunner, M. Takahashi, K. Imamura, M. Kučera, T. Shishido, J. Rusnák, T. Matsumoto, M. Jergel, M. Madani, M. Mikula, M. Uragou, S. Jurečka, and M. Kopaní, 6th Solid State Surfaces and Interfaces, Smolenice, Slovakia, Nov. 24-27, 2008.
- 27. J. Rusnák(スロバキア科学アカデミー), K. Imamura, T. Matsumoto, H. Kobayashi, and E. Pinčík, Investigation of very thin SiO₂/Si structures by charge version of DLTS using small excitation voltage steps, 6th Solid State Surfaces and Interfaces, Smolenice, Slovakia, Nov. 24-27, 2008.
- 28. T. Yanase(大阪大学), M. Takahashi, T. Matsumoto, H. Iwasa, S. Terakawa, and H. v Kobayashi, SiO₂/Si structure fabrication at low temperature by novel nitric acid method, 6th Solid State Surfaces and Interfaces, Smolenice, Slovakia, Nov. 24-27, 2008.
- 29. T. Matsumoto(大阪大学), W.-B. Kim, T. Yanase, Y. Fukaya, Asuha, M. Takahashi, and H. Kobayashi, Nitric acid oxidation of Si (NAOS) method to form gate insulators in Si devices at 120°C, The 12th SANKEN International Symposium, Osaka, Jan. 22, 2009.
- 30. Y. Higashi(大阪大学), M. Takahashi, H. Iwasa, and H. Kobayashi, New semiconductor cleaning method by use of ppm order HCN solutions, The 12th SANKEN International Symposium, Osaka, Jan. 22, 2009.
- H. Tsuji(大阪大学), Y. Kamakura, K. Taniguchi, Drain Current Model of Polycrystalline Silicon Thin-Film Transistors Including Influence of Interface Traps, 5th Handai Nanoscience and Nanotechnology International Symposium, Osaka, Japan, Sep. 1-3, 2009.
- 32. T. Matsumoto(大阪大学), M. Yamada, H. Tsuji, S. Imai, S. Terakawa and H. Kobayashi, Stacked gate oxide in thin film transistors (TFTs) formed by thee nitric acid oxidation of Si (NAOS) method, The 5th Handai Nanoscience and Nanotechnology International Symposium, Osaka, Japan, Sep. 1-3, 2009.
- 33. T. Matsumoto(大阪大学), W.-B. Kim, T. Yanase, Y. Fukaya, Asuha, M. Takahashi and H. Kobayashi, Nitric acid oxidation of Si (NAOS) method to form gate insulators in Si devices at 120°C, International Symposium of Post-Silicon Materials and Devices Research Alliance Project, Osaka, Japan, Sep. 5-6, 2009.
- 34. 辻 博史(大阪大学), 鎌倉良成, 谷口研二, 界面準位を考慮した多結晶シリコン薄膜トランジスタのドレイン電流モデル, 薄膜材料デバイス研究会第6回研究集会, 京都, 2009年11月2日~3日.
- 35. S. Imai ($\checkmark \gamma \gamma$), HNO₃ concentration dependence of electrical characteristics for SiO₂/Si structure fabricated by nitric acid oxidationmethod at 120°C, Progress in

Surface, Interface and Thin Film Science 2009, Florence, Italy, Nov. 16-19, 2009.

- 36. W.-B. Kim (大阪大学), Electrical and physical properties of ultrathin (<=1.5 nm) SiO₂ layer fabricated with high concentration nitric acid (HNO₃), Progress in Surface, Interface and Thin Film Science 2009, Florence, Italy, Nov. 16-19, 2009.
- 37. Y. Fukaya (大阪大学), Low temperature fabrication of thick SiO₂ layer using modified nitric acid oxidation of silicon (NAOS) method, Progress in Surface, Interface and Thin Film Science 2009, Florence, Italy, Nov. 16-19, 2009.
- 38. 田中峻介(大阪大学),松本健俊,岩佐仁雄,小林光,気相硝酸酸化法による~3 nm SiO₂/Si 構造の低温創製,第57回応用物理学関係連合講演会,神奈川,2010年3月17 日~20日.
- 39. 松本健俊(大阪大学),山田幹浩,辻 博史,モタハルマズンデル,寺川澄雄,今井繁規,小林 光,硝酸酸化法によるゲート酸化膜の低温創成と薄膜トランジスタの超低消費電力化, 第57回応用物理学関係連合講演会,神奈川,2010年3月17日~20日.
- 40. T. Ota (大阪大学), H. Tsuji, Y. Kamakura, and K. Taniguchi, Evaluation of turn-on transient characteristics of poly-Si TFT, The 2010 International Meeting for Future of Electron Devices, Kansai, Osaka, Japan, May 13-14, 2010.
- 41. T. Matsumoto M. Yamada, H. Tsuji, Y. Kubota, S. Imai, S. Terakawa, H. Kobayashi, Ultralow power thin film transistors (TFTs) with stacked gate oxide formed by the nitric acid oxidation of Si (NAOS) method, International Conference on Core Research and Engineering Science of Advanced Materials, Osaka, May. 30-Jun. 4, 2010.
- 42. H. Kobayashi(大阪大学), T. Matsumoto, W.-B. Kim, M. Takahashi, New chemical methods for improving Si solar cell characteristics, Nanofair 2010-8th International Nanotechnology Symposium, Dresden, Germany, Jul. 6-7, 2010.
- 43. H. Tsuji (大阪大学), Y. Kamakura, and K. Taniguchi, Capacitance Model for Thin-Film Transistors with Interface Traps, 218th ECS Meeting, Nevada, USA, Oct. 10-15, 2010.
- 44. 趙惠淑(大阪大学),松本健俊,岩佐仁雄,小林光,気相硝酸酸化(NAVOS)法による SiO₂/4H-SiC 構造の低温創製,SiC 及び関連ワイドバンドギャップ半導体研究会 第 19 回講演会,茨城,2010 年 10 月 21 日~22 日.
- 45. 金昌鍋(大阪大学),金佑柄,髙橋昌男,小林光,硝酸酸化法を用いる表面パッシベーション効果によるシリコン太陽電池の高効率化,第 30 回表面科学学術講演会,大阪,2010年11月4日~6日.
- 46. 趙惠淑(大阪大学),松本健俊,岩佐仁雄,小林光,気相硝酸酸化法により低温形成した SiO₂/Si 構造の低温創製,第 30 回表面科学学術講演会,大阪, 2010 年 11 月 4 日~6 日.
- 47. 深谷洋介(大阪大学),松本健俊,柳瀬隆,松本健俊,小林光,硝酸酸化(NAOS)法を 用いた 5-10 nm SiO₂/Si 構造の低温創製,第 30 回表面科学学術講演会,大阪,2010 年 11 月 4 日~6 日.

(4)知財出願

①国内出願(20件)

- 1. "酸化膜の形成方法並びにその酸化膜を備えた半導体装置およびその製造方法"小林 光、 国立大学法人大阪大学、2005/7/19 特願 2005-208133
- 2. "半導体上酸化膜の形成方法、高純度硝酸の再生方法およびその再生装置"小林 光、大田 好郎、清水駿平、野崎 正、ピュアレックス、2005/9/30 特願 2005-313429
- 3. "絶縁膜形成方法、絶縁膜形成装置、半導体装置の製造方法、および半導体装置並びにシ リコンカーバイドの基板の表面処理方法"小林 光、国立大学法人大阪大学、2006/8/08 特願 2006-215822
- 4. (3.の特願 2006-215822 の国優出願) "絶縁膜形成方法、絶縁膜形成装置、半導体装置の

製造方法、および半導体装置並びにシリコンカーバイドの基板の表面処理方法"小林 光、国立大学法人大阪大学、2006/8/10 特願 2006-218012

- 5. "光半導体装置およびその製造方法"小林 光、清水裕一、国立大学法人大阪大学/株式会 社KIT2006/9/04 特願 2006-239646
- 6. (2.の特願 2005-313429 の国優出願) "超高純度薬剤の再生方法及びその再生装置"小林光、大田好郎、清水駿平、野崎正、ピュアレックス、2006/9/28 特願 2006-290507
- 7. "半導体基板、半導体装置およびその製造方法"小林 光、2008/8/13 特願 2008-208398
- 8. "半導体への絶縁性被膜の形成方法および半導体装置の製造方法"小林 光、柳瀬 隆、 小林 光、2008/9/02 特願 2008-224467
- 9."全差動増幅器"桐原 正治、谷口 研二、 国立大学法人大阪大学、2008/11/21 特願 2008-298620
- 10. "絶縁性被膜の形成方法および半導体装置の製造方法"小林 光、柳瀬 隆、 小林 光、 2009/2/06 特願 2009-025764 (特願 2008-224467 の国内優先権主張出願)
- "絶縁膜の形成方法、半導体装置の製造方法および半導体装置の製造装置" 小林 光、 小林 光、2009/3/27 特願 2009-77984
- 12. "半導体基板の処理方法および半導体装置の製造方法" 小林 光、小林 光、 2009/3/27 特願 2009-77985
- 13. "半導体装置およびその製造方法"小林 光、小林 光、2009/9/04 特願 2009-204471
- 14. "転写用基板ならびに半導体装置及び半導体装置の製造方法"小林 光、小林 光、 2010/2/15 特願 2010-029643
- 15. "絶縁膜の形成方法、半導体装置の製造方法および半導体装置の製造装置"小林 光、小林 光、2010/2/16 特願 2010-030776(特願 2009-077984の国内優先権主張出願)
- 16~20 非公開
- ② 海外出願(6件)
- 1~6 非公開
 - (5)受賞・報道等

①受賞

- ②マスコミ(新聞・TV等)報道
- 1. 2005年11月15日、朝日新聞
 - 発表テーマ 研究最前線インタビュー(小林 光)
 - 発表概要
 - 低温で良質の酸化膜を形成できる硝酸酸化法を新規開発し、リーク電流の大幅な低減に成功。LSIやTFTに応用可能。
- 2. 2006年6月17日 読売新聞

発表テーマ 硝酸酸化法を開発

発表概要

LSIやTFTの微細化の障壁となっているゲート酸化膜のリークを大幅 に減少可能とする硝酸酸化法という新しい薄膜形成法を開発し、リー ク電流の低減に成功。

3. 2007年4月19日 読売新聞

発表テーマ TFT の高性能化

発表概要

TFT の高性能化を達成するために、低温で薄膜を形成可能とする硝酸酸化法を開発

2007年12月18日 化学工業日報
 発表テーマ シアノイオンで表面処理

発表概要

シアン化合物を用いて、室温の簡単な処理で欠陥消滅を簡便に行う方法を開発。

5. 2010年6月21日 時事ドットコム、MSN 産経ニュース

発表テーマ 半導体洗浄技術の開発

発表概要

シアン化水素水を用いて、金属汚染の除去と欠陥消滅の効果により、 太陽電池発電効率を10%向上することに成功。

6. 2010年6月22日 每日新聞、産経新聞、日刊工業新聞、日経産業新聞

発表テーマ 半導体洗浄技術の開発

発表概要

シアン化水素水を用いて、金属汚染の除去と欠陥消滅の効果により、 太陽電池発電効率を10%向上することに成功。

7. 2010年6月28日 読売新聞

発表テーマ 太陽電池の金属汚染完全除去

発表概要

太陽電池の製造工程で付く微細な金属を除去する洗浄技術を開発し、 長時間でも劣化せず変換効率が10%向上させる技術を開発。

8.2010年10月13日 日刊工業新聞

発表テーマ 欠陥修復型半導体洗浄技術の開発

発表概要

半導体上の金属汚染を除去すると同時に、半導体にある欠陥準位を消 滅する新しい技術を開発。

9. 2010 年 10 月 13 日 日刊工業新聞

発表テーマ 半導体洗浄技術の開発

発表概要

シアン化水素水を用いて、金属汚染の除去と欠陥消滅の効果により、 太陽電池発電効率を10%向上することに成功。

10. 2010 年 12 月 9 日 朝日新聞、読売新聞、毎日新聞、日刊工業新聞、日経産業新 聞

> 発表テーマ 硝酸酸化薄膜を用いた超低消費電力薄膜トランジスタの開発 発表概要

硝酸酸化法では、低温で電気特性の良好な SiO₂/Si 構造を形成できる。硝 酸酸化法とは、68%以上の高濃度の硝酸にシリコンを浸すだけの簡単な 方法であり、硝酸が分解して発生する原子状酸素や解離酸素イオン(O⁻) がシリコンと直接反応して 120℃以下の低温で二酸化シリコン(SiO₂) 膜が形成される。120℃で形成される酸化膜にもかかわらず、900℃で形 成される熱酸化膜よりも良好な電気特性を持っている。本手法を用いて TFT のゲート酸化膜の膜厚を 10nm まで低減することに成功した。この 結果、駆動電圧は 1V となり、現状の 12V 駆動の TFT に比較して消費電 力は 1/144 に低減することに成功し、さらに、微細化が可能となって、 サブミクロン TFT を創製することに成功。

この硝酸酸化法を用いてシリコン太陽電池を高効率化することにも成功。 本成果は2010年12月7日にアメリカで開催される国際学会IEDMで発 表。 (6)成果展開事例

①実用化に向けての展開

本プロジェクトで使用した欠陥消滅型半導体洗浄法については、JST の大学発ベンチャー推進 事業に採択され、その終了と同時に 2007 年 4 月に大学発ベンチャー㈱KIT を設立した。

§6 研究期間中の主なワークショップ、シンポジウム、アウトリーチ等の活動

年月日	名称	場所	参加人数	概要
2005年12月2日	半導体新規化	大阪大学	25 名	CREST 研究成果と関連招待
	学プロセス研			講演による会員企業への研
	究会			究公開
2006年1月27日	半導体新規化	大阪大学	25 名	CREST 研究成果と関連招待
	学プロセス研			講演による会員企業への研
	究会			究公開
2006年3月10日	半導体新規化	大阪大学	30 名	CREST 研究成果と関連招待
	学プロセス研			講演による会員企業への研
	究会			究公開
2006年7月28日	半導体新規化	大阪大学	25 名	CREST 研究成果と関連招待
	学プロセス研			講演による会員企業への研
	究会			究公開
2006年11月17	サイエンスセミ	大阪大学	50名	奈良市立一条高校生を対象
日	ナー2006			にした太陽電池ならびに半導
				体と光についての講義と実験
				ならびにCREST研究成果の
				公開[サイエンスパートナーシ
				ッププログラム(SPP)事業と
				の提携]
2006年12月1日	半導体新規化	大阪大学	22 名	CREST 研究成果と関連招待
	学プロセス研			講演による会員企業への研
	究会			究公開
2007年3月23日	半導体新規化	大阪大学	27 名	CREST 研究成果と関連招待
	学プロセス研			講演による会員企業への研
	究会			究公開
2007年7月27日	半導体新規化	大阪大学	30 名	CREST 研究成果と関連招待
	学プロセス研			講演による会員企業への研
	究会			究公開
2007 年 11 月 16	サイエンスセミ	大阪大学	50名	奈良市立一条高校生を対象
H	ナー2007			にした太陽電池ならびに半導
				体と光についての講義と実験
				ならびにCREST研究成果の
				公開しサイエンスパートナーシ
				ップブログフム(SPP)事業と
			00 H	
2007年11月22	半導体新規化	天 阪大字	26 名	UREST研究成果と関連招待
	子ノロセス研			・ 神供による云貝企美への研 空心明
	先云 业道 开 范担世		01 H	近公開 ODDOT 研究合用上即支担付
2008年3月19日	干导体新規化	天 阪大字	24 名	UKEST 研究成果と関連招待

	学プロセス研 究会			講演による会員企業への研 究公開
2008年8月1日	半導体新規化	大阪大学	28名	CREST 研究成果と関連招待
	学プロセス研		-0.1	講演による会員企業への研
	究会			究公開
2008年11月14	サイエンスセミ	大阪大学	50 名	奈良市立一条高校生を対象
日	ナー2008			にした太陽電池ならびに半導
				体と光についての講義と実験
				ならびにCREST研究成果の
				公開[サイエンスパートナーシ
				ッププログラム(SPP)事業と
				の提携]
2008年12月12	半導体新規化	大阪大学	22 名	CREST 研究成果と関連招待
日	学プロセス研			講演による会員企業への研
	究会			究公開
2009年3月19日	半導体新規化	大阪大学	26名	CREST 研究成果と関連招待
	学プロセス研			講演による会員企業への研
	究会			究公開
2009年8月21日	半導体新規化	大阪大学	20名	CREST 研究成果と関連招待
	学プロセス研			講演による会員企業への研
	究会		-	究公開
2009年11月27	サイエンスセミ	大阪大学	50名	奈良市立一条高校生を対象
E	ナー2009			にした太陽電池ならびに半導
				体と光についての講義と実験
				ならびにCREST研究成果の
				公開「サイエンスハートナーン ププーゲニュ (CDD) 本世上
				ッノノロクフム(SPP) 事美と の担 進 〕
9000 年 19 日 11	业清华实行化		の	
2009年12月11	十等仲利規化	入败八子	23 名	URESI 研究成果と関連指付 講演による自人業への研
	子ノロビス研究会			
2010 年 3 日 19 日	工云 半道休新担化	十四十学	30 夕	CRFST 研究成果と関連切法
2010 平 5 月 12 日	十等体利規定	八败八子	30 ⁄口	諸演に上る今日企業への研
	子/ E E 八 新			空小盟
2010年11月12	サイエンスヤミ	大阪大学	50 名	会良市立一条高校生を対象
	ナー2010		оохд	にした太陽電池ならびに半導
	, _010			体と光についての講義と実験
				ならびにCREST研究成果の
				公開[サイエンスパートナーシ
				ッププログラム(SPP)事業と
				の提携]
2010年7月23日	半導体新規化	大阪大学	23 名	CREST 研究成果と関連招待
	学プロセス研			講演による会員企業への研
	究会			究公開
2010年12月17	半導体新規化	大阪大学	20 名	CREST 研究成果と関連招待
日	学プロセス研			講演による会員企業への研
	究会			究公開

§7 結び

CREST 提案時の目標であるシステムディスプレイの低消費電力化率1/250は、完全に達成する ことができた。極薄硝酸酸化膜/10nm CVD 酸化膜のスタックゲート構造を持つ TFT では、1V 駆 動が可能であり、これ単独で低消費電力化率1/225 を得ることができた。さらに、回路、システムア ーキテクチャからのアプローチとして、静止画と動画部分を別々に駆動するマルチドライバ方式とリ フレッシュレートを 60Hz から 5Hz まで低減することによって、低消費電力化率、1/9 を達成するこ とができた。TFT 全体の低消費電力化率は、デバイス部分からの低消費電力化率とシステム部か らのそれとの積になるため、約 1/2000 の低消費電力化率が達成できたことになる。さらに、画素メ モリを用いる方式では、低消費電力化率1/50 を達成できた。この場合、デバイス部からの低消費 電力化率との積から、1/10,000 以下の低消費電力化率が達成できたことになる。

デモシステムについても、当初の目標を達成することができた。硝酸酸化法を用いた世界初の 3V 駆動の液晶ディスプレイの創製に成功し、デバイス部だけで約 1/40 の低消費電力化率を達成 することができた。また、画素メモリを用いた液晶ディスプレイでは、反射型液晶と太陽電池を組み 合わせて、外部からの電力を全く使用しない、すなわち外部供給電力が零の液晶ディスプレイを 創製することに成功した。

本プロジェクトで開発した硝酸酸化法の利点は、低温で良好な電気特性を持つ SiO₂/Si 構造を 形成できることにある。本プロジェクトでは、この利点を活かしてシステムディスプレイの超低費消費 電力化とTFT の微細化を行ったが、この技術は TFT に限らず種々の半導体製品に応用できる。

図 44 硝酸酸化プロセスの産業応用分野

例えば、硝酸酸化法を用いてシリコン表面を不活性化することによって、シリコン太陽電池を高効率化することができる。本プロジェクトで開発した共沸硝酸酸化法を用いてシリコン太陽電池を高効率化する研究は、我々が国内外の太陽電池メーカーと共同研究、共同開発を行っているのみならず、ヨーロッパ、オーストラリア、台湾、韓国などで盛んに研究がされている。

硝酸酸化法では、従来半導体製品の基板に使用することが困難であったPETなどのプラスチック基板を使用できる。120℃の低温で酸化膜を形成できるからである。このメリットを活かして、電子ペーパーやウェラブル PC・ディスプレイに利用することができる。さらに、図 44 に示すように、新情報端末や新アプリケーションデバイスや医療関係製品など種々の産業応用分野に利用できる可能性がある。

本プロジェクトでは、材料、プロセス、デバイス、回路、システムを統合的に研究することによって、システムディスプレイの超低消費電力化を行った。材料研究では、通常では研究室規模では扱え

ない大型のガラス基板上の多結晶シリコン薄膜を硝酸を用いて酸化する必要があった。このため に開発した硝酸酸化装置を稼動させるために、硝酸が漏れないように気密性を確保し、金属汚染 を防止するといった苦労をする必要があった。そのお陰で、硝酸酸化装置に関して種々のノウハウ を蓄積することができ、現在それらのノウハウを半導体装置メーカーに移転し実用化しようとしてい る。デバイス、回路、システムの研究では、我々3 グループのほか、マスク作製では HOYA に、 TFT と液晶パネル試作では半導体エネルギー研究所に随分お世話になった。

最後に、研究室のグループ写真を載せる。これは、平成22年9月に韓国のHanyang大学と合同セミナーを行った際の写真である。

