戦略的創造研究推進事業 CREST

研究領域「太陽光を利用した独創的クリーンエネル ギー生成技術の創出」

研究課題「高感度な可視光水分解光触媒の創製」

研究終了報告書

研究期間 平成21年10月~平成27年 3月

研究代表者:入江 寛 (山梨大学 クリーンエネルギー 研究センター、教授)

§1 研究実施の概要

(1) 実施概要

次世代のエネルギー資源として水素が注目されている。恒久的に地球上に降り注ぐクリーンな 太陽光エネルギーを利用して水から水素が製造可能となれば、環境にやさしいエネルギーサイ クルが構築できる。そこで、水分解のための光触媒材料を創製することを目的に検討を行なった。 特に太陽光には多くの可視光が含まれるため、可視光のもと水を完全分解(水素と酸素が2:1で 同時に発生)できる光触媒材料を、単一型水分解系(1光子システム)と協働型水分解系(2光子 システム、Zスキーム)の両面から探索した。

単独型水分解系において、新たに材料を設計することにより可視光照射の下で水を完全分解できる、助触媒として酸化ニッケル(NiO)を担持したニオブ(Nb)ドープ銀タンタル酸化物(NiO/AgTa_{0.7}Nb_{0.3}O₃)を見出した。

協働型水分解系において可視光照射の下で水の完全分解に成功した。すなわち、酸化チタン(TiO₂)およびチタン酸ストロンチウム(SrTiO₃)において、ドープによるバンド構造制御を行うことによって可視光に応答する水素発生光触媒と酸素発生光触媒を造り分け、ヨウ素系の酸化還元媒体を用いた Z-スキームを構築することで可視光照射下での水の完全水分解を達成した。

また、協働型水分解系において、これまでは水素発生および酸素発生光触媒中で、それぞれ 水素発生に寄与しない正孔および酸素発生に寄与しない電子を、酸化還元媒体を介して消滅さ せ水の完全分解を達成してきた。しかしながら、活性が上がらない一つの要因として、用いた酸 化還元媒体への電子、正孔の移動効率が低い、もしくは逆反応が進行することが想定されたた め、水素発生および酸素発生光触媒を、導電層を介して直接接合することを考えた。本研究で 可視光全域を利用できる水素発生光触媒として亜鉛ロジウム酸化物(ZnRh₂O₄,バンドギャップ Eg=1.2 eV)を見出していたため、酸素発生光触媒として既報の銀アンチモン酸化物(AgSbO₃, Eg=2.5 eV)とZnRh₂O₄を、導電層(Ag)を介して接合することによって酸化還元媒体なしでの純水 の可視光完全分解を達成した。この系では波長 540 nm 程度までの可視光が利用でき水を完全 分解できることが明らかとなった。ここで重要なことは、水の完全分解に必要な助触媒がなくても 水を完全分解できたことである。ZnRh2O4と Ag1-xSbO3-v(接合過程で AgSbO3 中に Ag 欠陥が生 成)の光利用波長が異なるため、助触媒を ZnRh₂O₄表面上のみに光析出することが可能であり、 大きく水分解活性が向上すると期待している。また、更に重要なことは、ここでは Ag1-xSbO3-vの光 利用波長に依存し、波長 540 nm 程度の可視光しか利用できなかったが、酸素発生光触媒として バンドギャップの小さな材料を選択すれば、全く同様な方法で Ag を介して ZnRh₂O₄と接合すれ ば長波長の可視光を利用して水を完全分解できることである。実際、バンドギャップの小さな酸素 生成光触媒を選択し、同様の方法で Ag を介し接合した結果、600 nm の単色光で水素、酸素が 量論比で発生することを確認した。これは我々の知る限り、世界初の成果であり論文執筆に向け てデータを集めている最中である。

水の完全分解だけでなく、半反応で水素を発生できる光触媒(水素発生光触媒)の探索も行った結果、ZnRh₂O₄ およびβ-FeSi₂ を見出した。ZnRh₂O₄ (Eg=1.2 V)の水素発生のアクションスペクトル測定を行ったところ、水素発生の外部量子収率(AQE)は 25~45%と光の利用効率は高いことを示した。また、注目すべきは 770±20 nm 単色光照射では AQE は低下するものの依然と25%の高い AQE が確認できたため、ZnRh₂O₄ は可視光域全体の光を利用できるだけでなく、赤外光も利用できることが明らかとなった。また、β-FeSi₂ (Eg=0.80 V)のアクションスペクトル測定では、AQE は測定波長全域で 20%程度を示した。また、波長>1300 nm の赤外光照射によっても水素発生を確認した。β-FeSi₂ は紫外及び可視光領域の全域を利用可能であるだけでなく赤外光にも応答可能であった。本材料は構成元素が Fe, Si であるため有望である。

(2)顕著な成果

<優れた基礎研究としての成果>

1. 単独型水分解系における可視光照射下で水を完全分解できる光触媒の創製 概要:銀タンタル酸化物(AgTaO₃)は水を完全分解できる光触媒であるが、バンドギャップ(Eg) が 3.4 eV で波長~360 nm までの紫外光しか利用できないため太陽光の利用効率が非常に低 い。その改善のためタンタル(Ta)サイトにニオブ(Nb)を置換することによりバンドギャップを狭 窄させ(Eg=2.9 eV)、波長 420 nm の可視光での水の完全分解を達成した。可視光で水を完全 分解できる光触媒材料は数例しかなく、基礎研究としての成果は高い。

2. 協働型水分解系における可視光照射下で水を完全分解できる光触媒システムの創出 概要:チタン酸ストロンチウム(SrTiO₃)一つの母構造においてバンド構造制御(価電子帯、伝 導帯)を行うことによって可視光に応答する水素発生光触媒と酸素発生光触媒を造り分け、Z-スキームを構築することで水の完全水分解を達成した。同様の手法で酸化チタン(TiO₂)のみ で可視光水分解も達成できた。光触媒材料として安定・安全・安価な酸化チタン光触媒だけを 用いて可視光で水を完全分解した前例はない。

3. 多電子酸素生成助触媒の探索(Sr₃Fe₂O₇, Sr_{2.6}La_{0.4}Fe₂O₇)

概要:4 電子酸素発生を効率よく進めるには Fe⁴⁺の安定化が必要であるとの知見を基に鉄酸化 物での多電子酸素発生助触媒の探索を行った。その結果、Sr₃Fe₂O₇ では 70℃以上で Fe⁴⁺が 安定化し、また室温では Sr サイトを La で置換することによって Fe⁴⁺が安定化し、それぞれ酸素 発生の過電圧が低下した。特に温度誘起酸素発生過電圧の低下の報告例はなく、新しい知 見であると言える。

<科学技術イノベーションに大きく寄与する成果>

1. 赤外光に応答する鉄シリサイド(β-FeSi₂)

概要:β-FeSi₂は赤外光が利用できる小さな Eg(0.8 eV)をもち、また、伝導帯下端が 0 V(vs. SHE)より負に位置するため水素発生光触媒として有望である。また、Si, Fe という資源埋蔵量 豊富な元素から構成されるため実用的にも望ましい。我々は波長 1300 nm 以上の赤外光を照 射しても犠牲剤存在下で水素の発生を確認した。また犠牲剤として水質汚染物質を考えれば β-FeSi₂での環境汚染物質除去と水素獲得を両立できる。

2. 接合系協働型水分解光触媒の創製(導電層を介した接合)

概要:水素および酸素発生光触媒を汎用性のある方法で、導電層(Ag)を介して接合する方法 を確立することによって、波長 600 nm の可視光を利用した純水の完全分解に成功した。これは 我々の知る限り世界初の成果である。この方法では水素および酸素発生光触媒を適切に選択 すれば利用波長がさらに伸びる可能性が、また、助触媒の選択的担持により活性向上が見込 めるなど、今後の展開に期待がもてる成果である。

3. 接合系協働型水分解光触媒の創製(オーミック直接接合)

概要:水素発生光触媒(i型, n型 Si)と酸素発生光触媒(WO₃)のオーミック接合形成による水の完全分解を示唆する結果が得られた。この結果は Si に代わる材料として可視光全域利用だけでなく赤外光の利用が可能なβ-FeSi₂、WO₃に代わる材料として WO₃より Eg が小さく元素戦略上有利な Fe₂O₃(Eg=2.4 eV、水熱法により合成することによって酸素発生発現に成功)の接合で水の完全分解ができることを示唆している。

§2 研究実施体制

(1)研究チームの体制について

①「山梨大学」グループ

研究参加者

氏名	所属	役職	参加時期
入江 寛	クリーンエネルギー 研究センター	教授	H21.10~
佐藤 哲也	クリーンエネルギー 研究センター	准教授	H21.10~H24. 3
倪磊	クリーンエネルギー 研究センター	博士研究員	H19.10~H20.3
高嶋 敏宏	クリーンエネルギー 研究センター	特任助教	H24.11~
内藤 志賀子	クリーンエネルギー 研究センター	研究補佐	H25. 1~H25. 3

研究項目

・水を完全分解できる単独型・協働型光触媒材料の創製

・赤外光を利用可能な水を半分解できる光触媒の探索

・高効率化のためのナノ構造制御

(2)国内外の研究者や産業界等との連携によるネットワーク形成の状況について

β-FeSi₂や接合系光触媒などに関して共同研究を実施した。

§3 研究実施内容及び成果

3.1 水を完全分解できる単独型光触媒材料の創製(山梨大学グループ)

(1)研究実施内容及び成果【<u>ニオブ置換銀タンタル酸化物</u>(AgTa_{0.7}Nb_{0.3}O₃)】
 ①研究のねらい

単独型の一光子励起系で可視光照射のもと水を完全分解できる光触媒材料は、国内外で多数の研究が行なわれているが、本プロジェクト開始時には再現性を考えると GaN-ZnO 固溶体のみの報告であった。すなわち、本プロジェクトにおいて新しい材料設 計で可視光水の完全分解が達成できれば、学術的な成果であると言えた。

銀タンタル酸化物 (AgTaO₃) はバンドギャップ 3.4 eV であり、助触媒として酸化ニッケ ル (NiO)を担持することによって紫外光照射のもと水を完全分解できことが知られている。 その価電子帯上端は酸素 2p (O 2p)と銀 4d (Ag 4d)の混成軌道から構成され、その電位 は約 2.5 V (vs. SHE) であることが知られている。すなわち、タンタル 5d (Ta 5d) 軌道で構 成される伝導帯の下端の電位は約-0.9 V となり熱力学的に水素 (H₂)を発生できる電位 0 V (vs. SHE) に対して比較的余裕があると言える。一方、銀ニオブ酸化物 (AgNbO₃) は バンドギャップ 2.8 eV であり、可視光のもと犠牲剤存在下で H₂ または酸素 (O₂)を発生で きる水の半分解材料である。AgTaO₃ と同様に AgNbO₃の価電子帯上端は O 2p と Ag 4d の混成軌道から構成されその電位は約 2.5 V (vs. SHE) である。すなわち、ニオブ 4d (Nb 4d) 軌道で構成される伝導帯の下端の電位は約-0.3V となり、Nb 4d 軌道は Ta 5d 軌道よ り正電位側に形成すると考えられる。従って AgTaO₃ の Ta サイトを Nb で置換すると AgTaO₃の伝導帯下端の電位を H₂発生電位より負側で制御でき、かつ AgTa_{1-x}Nb_xO₃ の バンドギャップは 2.8~3.4 eV の範囲で制御できると想定される。ここでは、Ta サイト Nb 置換 AgTaO₃ を作製し、助触媒 NiO を担持した後、可視光照射のもと水分解を評価し た。

②研究実施方法·内容·成果

ここでは、水熱合成法により AgTaO₃, AgTa_{0.7}Nb_{0.3}O₃, AgNbO₃を作製した。その後、 0.5 wt% NiOを担持した。クベルカームンク(KM)変換した吸光度 α の1/2 乗と光子エネル ギーのプロットから AgTaO₃, AgTa_{0.7}Nb_{0.3}O₃, AgNbO₃のバンドギャップを求めたところ、そ れぞれ 3.4, 2.9, 2.8 eV と見積もることができた。従って、AgTa_{0.7}Nb_{0.3}O₃は 430 nm までの 可視光を吸収できることが明らかとなった。

NiO/AgTa_{0.7}Nb_{0.3}O₃を波長 420 nm の LED ランプを用いた可視光照射下での水分解 を行ったところ、H₂, O₂は可視光照射時間増加と共に一定の傾きで発生し、また H₂, O₂ の発生比は 2:1 であった。また、繰り返し特性も良好であった(図 1)。従って可視光で水 を完全分解で

きたと言える。 さらには水素 発生のターン オーバー数が 10 を確認の とを確認の NiO/AgTa_{0.7}N $b_{0.3}O_3$ は可触媒

的に完全分 解できること が明らかとなった(Lei Ni, Momoko Tanabe, Hiroshi Irie, "Visible-Light Induced Overall

Water-Splitting Photocatalyst: Conduction Band-Controlled Silver Tantalate", Chemical Communications, vol. 49, p.p.10094-10096, 2013).

(2)研究実施内容及び成果【<u>ロジウム置換亜鉛ガリウム酸化物</u>(ZnGa_{0.98}Rh_{0.02}O₄)】 ①研究のねらい

既往の可視光応答型水分解光触媒は、紫外光しか吸収できない広いバンドギャップ をもつ材料に、ドーピングを行なうことによってバンドギャップ内に新たな準位を導入する 方法、また、価電子帯を主に構成する酸素 2p(O 2p)軌道のエネルギーに近い金属イオ ンの軌道を導入し価電子帯上端を低電位側にシフトする方法といったバンド構造制御が なされてきた。しかしながら、このようなアプローチでは再現性を考えると窒化ガリウムー 酸化亜鉛(GaN-ZnO)固溶体しか見出されていなかった。これは、既存の材料設計・探 索指針の延長ではなく、新規な設計・探索指針が必要であることを示唆していた。ここで では、新しい材料設計指針である「d⁶ 電子構造を有する金属イオンを用い、かつ正八面 体配置での t_{2g}-e_g 分裂を利用する」方法を提案し、新規な可視光応答型水分解材料を 創製することを目的とした。

②研究実施方法·内容·成果

バンドギャップ 4.1 eV の立方晶スピネル構造をとる亜鉛ガリウム酸化物(ZnGa2O4)に 注目した。ZnGa₂O₄では、Ga³⁺が O²⁻イオンを頂点とする正八面体中心に存在する。Ga³⁺ サイトの一部をRh3+で置換すると、その正八面体配置によりRh3+のd軌道の縮退が解け、 禁制帯内に Rh³⁺イオン由来の結合性 t_{2g}⁶軌道、反結合性 e_g⁰軌道が形成できる。これら の軌道は熱力学的に水を酸化および還元できるため、可視光を吸収し水分解できること が期待された(図 2)。具体的には Zn(GaogsRhoos)。O4 を水熱法によって作製し、その後 Rh₂O₃を助触媒として含浸法によって担持した。作製した光触媒材料の水分解活性を評 価した。照射光の光源として300WのXeランプを用い、光学フィルターにより波長420 nm, 500 nm 以上の可視光に制限した。犠牲剤としてメタノール(CH₃OH)、硝酸銀(AgNO₃) 存在下でのH₂, O₂発生をガスクロマトグラフにて定量した。犠牲剤存在のもと、420 nm 以 上の可視光だけでなく、500 nm 以上の可視光を照射したときも H2, O2 発生が確認できた。 従って、図2に示すようにt2g⁶軌道は酸素発生可能であること、eg⁰軌道は水素発生可能 であることが明らかとなった。現在、助触媒を探索し、可視光での水の完全分解を目指し て検討を行っている(Naoya Kumagai, Lei Ni, Hiroshi Irie, "Visible-Light-Sensitive Water Splitting Photocatalyst Composed of Rh³⁺ in a 4d⁶ Electronic Configuration, Rh³⁺-Doped ZnGa₂O₄", Chem. Communications, 47, 1884-1887, 2011).

図 2 ZnGa₂O₄, Zn(Ga_{2-x}Rh_x)O₄の電子状態密度計算および Zn(Ga_{2-x}Rh_x)O₄のバンド図

3.2 水を完全分解できる協働型光触媒材料の創製(山梨大学グループ)

(1)研究実施内容及び成果【同一母構造を利用したZスキーム構築による水の完全分解】 ①研究のねらい

協働型水分解系(2 光子システム)として Z-スキームによる水の完全分解が報告され ている。ここでは、この Z-スキームに注目し、一つの母構造においてバンド構造制御を行 い可視光応答化させ、伝導帯を制御した材料を酸素発生光触媒として、価電子帯を制 御した材料を水素発生光触媒として用い Z-スキームを構築することで水の完全水分解 を目指した。これが達成できれば酸化チタン(TiO₂)を材料として使用でき、安定、安価、 かつ元素戦略上有望であると期待できる。ここでは、この戦略で可視光による水の完全 分解が可能か、バンドギャップエネルギーが同じで、かつそのバンド構造が TiO₂ と類似 しており、かつ A サイト、B サイト置換が容易であることからチタン酸ストロンチウム (SrTiO₃)を選択し検討を行った。

②研究実施方法·内容·成果

ナトリウム(Na)・バナジウム(V)置換 SrTiO₃ ((Sr_{0.99}Na_{0.01})(Ti_{0.99}V_{0.01})O₃, Na,V-SrTiO₃) およびロジウム置換 SrTiO₃ (Sr(Ti_{0.99}Rh_{0.01})O₃, Rh-SrTiO₃)を固相法にて作製し、光析出 法を用いてそれぞれ Ruを担持した (Ru/Na,V-SrTiO₃, Ru/Rh-SrTiO₃)。H₂ および O₂ 発 生のアクションスペクトル測定と既往の知見から Rh-SrTiO₃ では Rh 4d 軌道が価電子帯を 形成する O 2p 軌道と一部混成しバンドギャップが狭窄し、Na,V-SrTiO₃ では V 3d 軌道 による孤立準位が伝導帯下方に形成したと結論付けた (図 3)。

作製した光触媒の水分解活性をヨウ素系酸化還元媒体 (IO₃⁻/Γ)存在のもと評価した。 300WのXeランプにY-44光学フィルターを用いて波長 420 nm以上の可視光を照射し、 発生したH₂, O₂を定量したところ、H₂, O₂が 2:1の割合で発生すること、この繰り返し特性 も良好であることが確認できた (図 3, 4)。また、H₂発生のターンオーバー数は 1 を超え、 触媒的に水を完全分解できた (Shoichi Hara and Hiroshi Irie, "Band Structure Controls of SrTiO₃ towards Two-Step Overall Water Splitting", Journal of Applied Catalysis B: Environmental, 115–116, 330–335, 2012、Shoichi Hara, Masaharu Yoshimizu, Satoshi Tanigawa, Lei Ni, Bunsho Ohtani, Hiroshi Irie, "Hydrogen and Oxygen Evolution Photocatalysts Synthesized from Strontium Titanate by Controlled Doping and Their Performance in Two-Step Overall Water Splitting under Visible Light", Journal of Physical Chemistry C, 116, 17458–17463, 2012)。

更に SrTiO₃をTiO₂に変更することにより、TiO₂母構造のみで Z スキームを構築することにより、可視光照射下での水の完全分解に成功している。

Ru/Rh-SrTiO₃

図 3 Na,V-SrTiO₃および Ru-SrTiO₃のバン ド構造と Ru/Na,V-SrTiO₃, Ru/Rh-SrTiO₃ 共存下での可視光水の完全分解機構

図 4 Ru/Na,V-SrTiO₃, Ru/Rh-SrTiO₃共存 下での可視光水の完全分解

(2)研究実施内容及び成果【オーミック接合よる水の完全分解】 ①研究のねらい

ここでのコンセプトは 2 種類の半導体をオーミック接合することである。すなわち、O₂ 発生は可能であるが H₂発生にはポテンシャルが不足の O₂発生光触媒および H₂発生は 可能であるが O₂発生にはポテンシャルが不足の H₂発生光触媒を接合するものである。 すなわちオーミック接合部で O₂発生光触媒の伝導帯に光生成する電子および H₂発生 光触媒の価電子帯に光生成する正孔を消費することによって O₂発生光触媒の水を酸化 可能なポテンシャルを有する正孔、H₂発生光触媒の水を還元可能なポテンシャルを有 する電子を利用するというものである(図 5)。本研究で使用してした Si/WO₃系は中戸ら やアメリカ国家プロジェク

ト(SHArK)により行われ ているが、共に電極系で の検討、さらに中戸らは Si-WO₃間にメチル化・微 粒子 Pt 担持を、SHArK では導電性ポリマーを導 入しておりコンセプトは異 なる。一方で、本研究の 提案は直接接合でオーミ ック特性が得られる材料 を選択している点、粉末 系への展開を視野に入 れている点で独創性があ ると考えている。

②研究実施方法·内容·成果

Si 基板として n 型シリコン (n-Si)、真性シリコン (i-Si)、p 型シリコン (p-Si)を選択し、基 板表面の自然酸化膜を除去した後、高周波マグネトロンスパッタ法により酸化タングステ ン(WO。)を製膜した。その後、Si および WO。上に白金(Pt)を電極としてスパッタ成膜し その上に銅線を銀ペーストにて接着し電極とした。キセノンランプ照射有無による電流特 性(それぞれ光電流、暗電流)を観察した。共に光電流は暗電流より大きな値を示した。 特筆すべきは光電流、暗電流共に WO₃/p-Si では通常の整流特性を示したが、 WO₃/n-Si, WO₃/i-Si では整流性は認められずオーミック特性を示した。これはWO₃のフ ェルミ準位と n-Si, i-Si, p-Si のフェルミ準位を考えた場合、妥当な結果である。また、 WO₃/p-Siでは水分解によるH₂,O₂の発生はほとんど認められなかったが、WO₃/n-Siで は H₂:O₂=2:1 で発生することを確認した。これは、n-Si と WO2間でオーミック接合が形 成されたためであり、動作原理が検証できた(光触媒組成物及び光触媒組成物の製造 方法」、入江寛、佐藤哲也、橘田太樹、特許第5695334号、「光触媒組成物及び光触媒 組成物の製造方法」、入江寛、佐藤哲也、橘田太樹、PCT/JP2011/053946)。しかしな がら、WO₃/Fe₂O₃ではあるが同じ動作原理の論文が発表されたため(M. T. Mayer et al., J. Am. Chem. Soc., 134, 12406, 2012)、またオーミック接合が可能な材料の選択肢が狭 いことが明らかとなってきたため検討を中止し、導電層を介した接合系へと研究をシフト した。

(3)研究実施内容及び成果<u>【導電層を介した接合よる水の完全分解】</u> ①研究のねらい

上述のように協働型水分解系(2光子システム)として Z-スキームが提案されている。 この反応は、可視光照射下で水の半分解が可能なH₂発生光触媒とO₂発生光触媒を組 み合わせ、酸化還元媒体を用いることで可視光による水の完全分解が達成できている。 ここでは、酸化還元媒体を必要としない二段 階励起による純水の完全分解を目指した。 酸化還元媒体を必要としない二段階励起水 分解の研究はKudoら,Amalらによるルテニ ウム(Ru)担持ロジウム(Rh)ドープ SrTiO₃ (Ru/SrTiO₃:Rh)とBiVO₄ および Ru/SrTiO₃:Rhと光還元した酸化グラフェン (PRGO)を担持したBiVO₄ (PRGO/BiVO₄) を,ゼータ電位差を利用して接合した系が報 告されている。しかしこの静電的引力を利用 するためにはpH3に設定する必要があり純 水の完全分解ではない。ここでは酸化銀の 熱分解を利用した新規接合方法により、H₂ 発生光触媒とO₂発生光触媒の間に導電層 として銀(Ag)を介して両光触媒を接合するこ

図 6 Agを介した接合による 可視光照射下での水分解概念

とで、Ag を介し水分解に関与しない不要な電子正孔対が効率的に消費され、純水の完 全分解が達成できると考えた(図 6)。ここでは、 H_2 発生光触媒として、本プロジェクトで見 出した赤外光まで利用可能なロジウム酸亜鉛(ZnRh₂O₄, Eg=1.2 eV)、O₂発生光触媒と してはすでに報告されているパイロクロア型アンチモン酸銀(AgSbO₃, Eg=2.5 eV)を選 択した。

②研究実施方法·内容·成果

酸化銀(Ag₂O)および通常の固相法により合成した ZnRh₂O₄, AgSbO₃を均一に混合 したのち, Ag の融点付近の温度である 900°C, 2 h で熱処理を行った。微粉砕後 (ZnRh₂O₄/Ag /AgSbO₃)、過剰な Ag を除去するため硝酸(HNO₃)処理を行った。HNO₃ 処理の過程で AgSbO₃ 中に Ag 欠陥が生成し、作製した接合系光触媒は ZnRh₂O₄/Ag/Ag_{1-x}SbO_{3-y}であった。この接合系光触媒を用いて波長460 nm 以上の可視 光照射下で純水を用いた水分解実験を行ったところ、繰り返し安定した H₂と O₂ の化学 両論比での発生を確認でき、純水の完全分解を達成した(図 7)。なお、比較として ZnRh₂O₄, Ag_{1-x}SbO_{3-y} それぞれ単体、HNO₃ 処理を行っていない接合系

ZnRh₂O₄/Ag/AgSbO₃、Ag₂O を使 用しない以外は同じ条件で接合 した ZnRh₂O₄/Ag_{1-x}SbO_{3-v}も同条 件で水分解試験を試みた。 ZnRh₂O₄, Ag_{1-x}SbO_{3-v}それぞれ単 体では H₂と O₂は全く検出できな かった。ZnRh₂O₄/Ag_{1-x}SbO_{3-v}で は H₂と O₂の化学両論比での発 生は確認できたものの ZnRh₂O₄/Ag/Ag_{1-x}SbO_{3-v}と比較し て H₂, O₂の発生速度は 3 分の 1 程度であった。以上から, ZnRh₂O₄/Ag/Ag_{1-x}SbO_{3-x} におけ る完全水分解は、Ag が水分解に 関与しない不要な電子・正孔対を 効率よく消滅させているためと考

図 7 ZnRh₂O₄/Ag/Ag_{1-x}SbO_{3-y}を用いた可視光 照射下(> 460 nm)での水分解結果

えられる(図 6)。また、HNO₃処理を行っていない接合系 ZnRh₂O₄/Ag/AgSbO₃でも H₂, O₂ 共に発生したものの量論比からずれ、O₂ 発生が H₂を上回った。これは接合に関与し ない Ag が ZnRh₂O₄や AgSbO₃表面上に残存し、同様に共存する Ag⁺が犠牲剤として働 き、AgSbO₃によって O₂が余分に発生したものと考えている。 Ag による接合はここで示した ZnRh₂O₄, AgSbO₃ 以外にも応用可能である。ここでは O₂発生光触媒として AgSbO₃を用いたため、さらに想定外に AgSbO₃内に Ag 欠陥が生 成したため可視光吸収能が低下し、ZnRh₂O₄/Ag/Ag_{1-x}SbO_{3-y}では波長 540 nm 程度まで しか利用できなかった(ZnRh₂O₄ は E_g=1.2 V なので近赤外線も利用可能)。しかしながら, より可視光吸収能が高い O₂発生光触媒を用いることによって当研究室では波長 600 nm の可視光を利用した純水の完全分解に成功している。さらに波長 700 nm も視野に入っ てきており、本方法はより長波長利用の観点から有望でないかと考えている(Ryoya Kobayashi, Satoshi Tanigawa, Toshihiro Takashima, Bunsho Ohtani, Hiroshi Irie, Journal of Physical Chemistry C, 118, 22450–22456, 2014)。

3.3 半反応により水素を発生できる光触媒材料の探索(山梨大学グループ)

```
(1)研究実施内容及び成果【<u>亜鉛ロジウム酸化物</u> ZnRh<sub>2</sub>O<sub>4</sub>】
①研究のねらい
```

協働型水分解系(2 光子システム)構築のために活性の高い、できるだけ長波長の可 視光、もしくは赤外光を利用できる H₂発生光触媒を探索した。光触媒として酸化物を用 いる場合、典型的な酸化物では価電子帯が O2p 軌道で構成されるため、その上端の電 位は約 3 V (vs. SHE)である。したがって典型的な酸化物は強い酸化力を有し、水を酸化 し O₂を発生することができる。一方、可視光活性を期待した場合バンドギャップが 3 Vよ り小さくなるため、必然的に、伝導帯下端の電位は 0 V (vs. SHE)より正側となり熱力学的 に水を還元しH₂発生はできなくなる。そこで、本研究では、価電子帯上端が O2p で構成 されない酸化物を探索し、その結果、価電子帯上端が Rh 3d 軌道から構成されるため、 その上端の電位が 3 V (vs. SHE)より大幅に負側にシフトすると想定され、かつバンドギャ ップが 1.2 eV である ZnRh₂O₄に注目し、H₂発生触媒としての能力を評価した。

②研究実施方法·内容·成果

ZnRh₂O₄粉末はZnO, Rh₂O₃を出 発原料に通常の固相法を用いて合 成した。クベルカームンク変換 (ZnRh₂O₄は間接遷移型半導体)し た紫外可視拡散反射スペクトルのプ ロットからバンドギャップは約 1.2 eV と見積もられ、既往の知見と一致し た。Xe ランプ全光照射のとき、犠牲 剤にメタノール(CH₃OH)を用いたと きには水素発生をほとんど確認でき なかったが、ホルムアルデヒド (HCHO)では H₂発生が確認できた。 つまり、ZnRh₂O₄の価電子帯に生成 する正孔は CH₃OH を酸化できない が HCHO は酸化できることを示して

図 8 ZnRh₂O₄ での H₂ 発生アクションスペクト ル。紫外可視拡散反射スペクトルと共に示す。

おり、それら犠牲剤の酸化還元電位を考慮するとその価電子帯上端の電位は 0.1~0.2 V 程度にあると想定される。これは想定した通り、ZnRh₂O₄の価電子帯上端は Rh³⁺ t_{2g}軌 道から構成されるため一般的な酸化物の価電子帯上端に比べ大きく負側(高エネルギ 一側)にシフトしたものと考えられる。H₂発生のアクションスペクトル測定を行ったところ、 ZnRh₂O₄の紫外可視拡散反射スペクトルと、H₂発生の外部量子収率(AQE)がよく一致し た(図 8、770 nm 単色光照射ではAQE は低下し紫外可視拡散反射スペクトルとは重なっ ていない。しかしながら、拡散反射スペクトルの 770 nm 付近の吸収は ZnRh₂O₄ 中の欠陥 によるものと考えることができ、500~650 nm 範囲の吸収の減少の延長線上に 770 nm 単 色光照射での AQE が存在すると考えられる)。すなわち、H₂の発生は ZnRh₂O₄の光励起 によってもたらされたものと考えることができる。また、AQE は 770 nm においても 25%を 示し、可視光全域だけでなく赤外光も利用でき、非常に光の利用効率は高いことを示し た (Yuichiro Takimoto, Taiki Kitta, Hiroshi Irie, "Visible-Light Sensitive Hydrogen Evolution Photocatalyst ZnRh₂O₄", International Journal of Hydrogen Energy, 37, 134-138, 2012)。

(2)研究実施内容及び成果【<u>β-鉄シリサイド</u>β-FeSi₂】 ①研究のねらい

ZnRh₂O₄は、価電子帯上端が O2p で構成されない酸化物を探索した結果、バンドギャップ 1.2 eV にもかかわらず高い H₂発生活性を示す、また 1.2 eV であるため赤外光も 利用できる光触媒として機能することを見出した。しかしながら、Rh を含むため元素戦略 上好ましくない。そこで本研究では元素戦略上好ましい元素から構成される材料を探索 し、β-FeSi₂ に注目した。β-FeSi₂ は太陽電池や熱電材料への応用が研究されている高 い安定性を有する半導体材料であり、仕事関数 4.65 eV、バンドギャップ 0.8 eV であるこ とから H₂ 発生が可能な電位に伝導帯下端が位置し、かつ赤外領域の光を利用できると 想定できた。そこで、β-FeSi₂の光照射安定性、H₂発生活性を評価した。 ②研究実施方法・内容・成果

性評価をXPSによりSi(Si⁰, Si²⁺, Si³⁺, Si⁴⁺)、Fe(Fe⁰, Fe³⁺)、Oの変化を測定した。実験に は β -FeSi₂薄膜に犠牲剤として水素発生が確認された HCHO 使用し、Xe ランプ全光照 射を行った。表面から2 nm 程度は酸化され Si⁰, Si²⁺が減少、O, Si³⁺, Si⁴⁺が増加した。しか

しながら表面から2 mm より深いところの組成 は光照射有無によって変化しなかった。この ことから、β-FeSi₂ は水中での光照射時は表 面を 2 nm 程度の酸化膜で覆われ安定する ことが明らかとなった。

犠牲剤としてジチオン酸イオン ($S_2O_6^{2-}$) を用いて H₂発生のアクションスペクトルを測 定したところ、AQE は測定波長全域で 20% 程度を示し、β-FeSi₂の紫外可視拡散反射 スペクトルと一致した。また、波長1300 nm 以 上の赤外光照射によっても水素発生を確認 した(図9)。β-FeSi₂は紫外及び可視光領域 の全域を利用可能であるだけでなく赤外光 にも応答可能であった。本材料は構成元素 が Fe, Si であるため有望である。

図 9 β-FeSi₂による波長 1300 nm 以上 の赤外光照射下での H₂発生

3.4 半反応により酸素を発生できる光触媒材料の探索(山梨大学グループ)
 (1)研究実施内容及び成果【タングステン・ガリウム(W・Ga)共ドープ酸化チタンTiO₂】
 ①研究のねらい

協働型水分解系(2 光子システム)構築のために活性の高い、できるだけ長波長の可 視光を利用できる O₂ 発生光触媒を探索した。光触媒として酸化物を用いる場合、典型 的な酸化物では価電子帯が O2p 軌道で構成されるため、その上端の電位は約 3 V (vs. SHE)である。したがって典型的な酸化物は強い酸化力を有し、水を酸化し O₂ を発生す ることができる。その代表例が酸化チタン(TiO₂)であるが、そのバンドギャップは 3.2 eV であり紫外光にしか応答しない。そこで TiO₂ の価電子帯は制御せず、伝導帯下端を電 位正側にシフトすることによって酸化力は維持したまま可視光応答化を試みた。

②研究実施方法·内容·成果

ルチル型 TiO₂の Ti⁴⁺サイト W⁶⁺, Ga³⁺置換によって Ti_{1-3x}W_xGa_{2x}O₂(x = 0~0.12)を作 製した。 紫外可視拡散反射スペクトルからバンドギャップを見積もったところ x = 0.08 以上 でバンドギャップは約 2.8 eV まで狭窄した。 ルチル型 TiO₂のバンドギャップは 3.0 eV で あるため, Ti⁴⁺サイト W⁶⁺, Ga³⁺置換によって, 光学的にバンドギャップが狭窄したことが確

認できた。Ti_{1-3x}W_xGa_{2x}O₂(x=0.10) を用いてO。発生のアクションスペク トルを測定した結果、AQE の照射 波長に対する依存性の挙動は Ti1-3xWxGa2xO2(x=0.10)の紫外可視 拡散反射スペクトルとよく一致した (図 10)。一方、ノンドープ TiO₂でも その拡散反射スペクトルとよく一致 した。これらの結果ら、Ti⁴⁺サイト W⁶⁺, Ga³⁺置換によって光学的なバ ンドギャップの狭窄だけでなく,電 子軌道が混成しバンドギャップが狭 窄していることが示された。このバ ンドギャップの狭窄は TiO2 の伝導 帯を形成する Ti 3d 軌道に W 5d 軌 道が混成し伝導帯下端が正の電

位側にシフトしたためである。(Lei Ni, Taiki Kitta, Naoya Kumagai, Bunsho Ohtani, Kazuhito Hashimoto, Hiroshi Irie, "Hydrothermal Synthesis of Visible Light-Sensitive Conduction Band-Controlled Tungsten-Doped Titanium Dioxide Photocatalysts with Copper Ion-Grafts", Journal of Ceramic Society of Japan, 121, 563-567, 2013)。

(2)研究実施内容及び成果【<u>酸化鉄</u>Fe₂O₃】 ①研究のねらい

協働型水分解系(2 光子システム)構築のため に活性の高い、できるだけ長波長の可視光を利用 できる O_2 発生光触媒を探索した。酸化鉄(Fe₂O₃) はバンドギャップ 2.2 eV、さらに元素戦略上も好ま しい。しかしながら市販の Fe_2O_3 では O_2 発生活性 を示さないため、本研究では水熱法により高結晶 性の Fe_2O_3 ナノ粒子合成し、 O_2 発生活性の発現を 目指した。

②研究実施方法·内容·成果

20.0k V x30.0K (. bd);ά

図 11 キュービック状 Fe₂O₃粒子 の SEM 写真

水熱合成法により一辺が数 100 nm 程度のキュ の SEM 与真 ービック状の Fe₂O₃粒子(図 11)を合成したところ、O₂発生活性を示した。

3.5 多電子酸素発生助触媒の探索(山梨大学グループ)

(1)研究実施内容及び成果【<u>ストロンチウム鉄酸化物</u> Sr₃Fe₂O₇】①研究のねらい

水を可視光で完全分解できる材料は、熱力学的には伝導帯下端が0V(vs.SHE)より 負側、価電子帯上端が1.23V(vs.SHE)より正側である。このような材料はすでに数多く 見出されており、また本研究においても新たな材料設計を導入することによってもいくつ か見い出している。しかしながら、水の完全分解できる現在見出されている材料は、その ような熱力学条件を満たす数多くの材料のなかで現状ではGaN-ZnO 固溶体、BiYWO₆, 本研究でのNb 置換AgTaO₃、Rh・SbドープSrTiO₃など数個のみである。これら材料の価 電子帯下上端の電位は約 2.5~2.8 V (vs. SHE), 伝導帯下端の電位は約-0.2~0.4 V (vs. SHE)程度である。つまり水素側は、過電圧はそれほど大きくなく、酸素側の過電圧は非常に大きい。この理由は、価電子帯上端が 1.23 V vs. SHEより正側で熱力学的に酸素発生が可能であるのは 4 電子反応を意味しており、1 電子反応であると 2.38 V vs. SHE、2 電子反応でも 1.76 V vs. SHE が少なくとも必要となる。(熱力学的条件は単なる平衡論なので、実際の速度論を考えた場合さらに大きな電位が必要である。)従って、今まで見出されてきた完全分解光触媒の酸素発生は 1 電子反応が進行していると想定される。そこで、酸素生成助触媒として多電子反応(4 電子もしくは 2 電子)を進行できる材料を見出せば、この接合系光触媒においても完全分解の活性が大きく向上するものと考えられる。このような多電子酸素生成助触媒を探索し、熱力学的に水を完全分解できる材料に 担持すれば、可視光で水を完全分解可能な単独型光触媒が創製できると期待できる。ここでは、元素戦略上有利な鉄に着目し、高活性な酸素発生触媒を開発することを目的とした。

②研究実施方法·内容·成果

本研究ではまず α -Fe₂O₃を用いて分光電気化学的検討を行い、その結果からFe⁴⁺が 酸素発生反応に寄与していることを見出した。そして、さらに Ruddlesden-Popper 型鉄酸 化物の一種であるストロンチウム鉄酸化物 (Sr₃Fe₂O₇)を用いてFe⁴⁺が示す電荷不均化反 応(Fe⁴⁺ → Fe³⁺ + Fe⁵⁺)の制御をしながら高活性化に向けた検討を行った。Sr₃Fe₂O₇ で は通常、Fe⁴⁺は不均化反応のため不安定であるが、Sr₃Fe₂O₇ においては 70°C 以上にす ることで安定化できるという知見を利用して電気化学測定を行ったところ 30°C の時よりも 約 150mV ほど O₂ 発生の過電圧を低減することができた。また Sr サイトを La 置換するこ とによって不均化反応を抑制し、室温でも O₂ 発生の過電圧を低減することができた (Toshihiro Takashima, Kouki Ishikawa, Hiroshi Irie, "Thermal Activation of Sr₃Fe₂O₇ Electrocatalysts for Water Oxidation at Neutral pH", ECS Transactions, 61 (22), 35-41, 2014)。

§4 成果発表等

(1)原著論文発表 (国内(和文)誌 1件、国際(欧文)誌10件)

- 1. Naoya Kumagai, Lei Ni, Hiroshi Irie, "Visible-Light-Sensitive Water Splitting Photocatalyst Composed of Rh³⁺ in a 4d⁶ Electronic Configuration, Rh³⁺-Doped ZnGa₂O₄", Chemical Communications, vol. 47, 1884-1887, 2011
- 2. Yuichiro Takimoto, Taiki Kitta, Hiroshi Irie, "Visible-Light Sensitive Hydrogen Evolution Photocatalyst ZnRh₂O₄", International Journal of Hydrogen Energy, vol. 37, pp.134-138, 2012
- 3. Shoichi Hara and Hiroshi Irie, "Band Structure Controls of SrTiO₃ towards Two-Step Overall Water Splitting", Journal of Applied Catalysis B: Environmental, vol. 115-116, pp.330-335, 2012
- 4. Shoichi Hara, Masaharu Yoshimizu, Satoshi Tanigawa, Lei Ni, Bunsho Ohtani, Hiroshi Irie, "Hydrogen and Oxygen Evolution Photocatalysts Synthesized from Strontium Titanate by Controlled Doping and Their Performance in Two-Step Overall Water Splitting under Visible Light", Journal of Physical Chemistry C, vol. 116, pp.17458-17463, 2012
- 5. Lei Ni, Taiki Kitta, Naoya Kumagai, Bunsho Ohtani, Kazuhito Hashimoto, Hiroshi Irie, "Hydrothermal Synthesis of Visible Light-Sensitive Conduction Band-Controlled Tungsten-Doped Titanium Dioxide Photocatalysts with Copper Ion-Grafts", Journal of Ceramic Society of Japan, vol. 121, p.p.563-567, 2013
- Lei Ni, Momoko Tanabe, Hiroshi Irie, "Visible-Light Induced Overall Water-Splitting Photocatalyst: Conduction Band-Controlled Silver Tantalate", Chemical Communications, vol. 49, p.p.10094-10096, 2013
- 7 . Toshihiro Takashima, Akira Yamaguchi, Kazuhito Hashimoto, Hiroshi Irie, Ryuhei Nakamura,"In situ UV-vis Absorption Spectra of Intermediate Species for Oxygen-Evolution Reaction on the Surface of MnO₂ in Neutral and Alkaline Media", Electrochemistry, vol. 82 (5), p.p.325-327, 2014
- 8. Ryoya Kobayashi, Satoshi Tanigawa, Toshihiro Takashima, Bunsho Ohtani, Hiroshi Irie, "Silver-Inserted Hetero-Junction Photocatalysts for Z-Scheme Overall Pure-Water Splitting under Visible-Light Irradiation", Journal of Physical Chemistry C, vol. 118, pp. 22450-22456, 2014
- 9. Toshihiro Takashima, Kouki Ishikawa, Hiroshi Irie,"Thermal Activation of Sr₃Fe₂O₇ Electrocatalysts for Water Oxidation at Neutral pH", ECS Transactions, vol. 61 (22), p.p. 35-41, 2014
- 10. 入江寛, "可視光に応答する水の完全分解光触媒の設計と創製(Designs and Preparations of Visible-Light-Sensitive Overall Water-Splitting Photocatalysts)", 色材協会誌, 88 (1), 8-12 (2015)
- Masaharu Yoshimizu, Ryoya Kobayashi, Makoto Saegusa, Toshihiro Takashima, Hiroshi Funakubo, Kensuke Akiyama, Yoshihisa Matsumoto, Hiroshi Irie, "Photocatalytic Hydrogen Evolution over β-Iron Silicide under Infrared-Light Irradiation", Chem. Commun., 51, 2818-2820 (2015)

(2)その他の著作物(総説、書籍など)

- 1. 入江 寛、太陽エネルギーの化学エネルギーへの変換、地域から、未来が見える Yafo Annual Book、Vol 12、89-95 ページ、2010 年
- 2. 入江 寛、未来のエネルギー ソーラーハイドロジェン Journal of the Society of Inorganic Materials, Japan、17 巻、349 号、423-427 ページ、2010 年
- 3. 入江 寛, 太陽光水素の製造触媒, ケミカルエンジニアリング, vol. 57, No. 2, 2012
- 4. 入江 寛,太陽光水素の製造触媒, OHM, vol. 9, 2-4 ページ、2012 年

(3)国際学会発表及び主要な国内学会発表

- ① 招待講演(国内会議 9件、国際会議 7件)
- 1. Hiroshi Irie (Univ. of Yamanashi)、Photocatalytic Water-Splitting under Visible light Irradiation、 17th China-Japan Bilateral Symposium on Intelligent Electrophotonic Materials and Molecular Electronics (SIEMME' 17)、Beijing (China)、2010 年 9 月 24, 25 日
- 2. 入江寛(山梨大)、太陽光水素の製造触媒、ポリマーフロンティア 21 エネルギー未来材料、東

京工業大学、2011年6月10日

- 3. Hiroshi Irie (Univ. of Yamanashi)、A Nobel System for Photocatalytic Water-Splitting、18th China-Japan Bilateral Symposium on Intelligent Electrophotonic Materials and Molecular Electronics (SIEMME'18)、Tianjin(China)、2012 年 9 月 17, 18 日
- 4. Hiroshi Irie (Univ. of Yamanashi)、Novel Two-Step Overall Water-Splitting System Composed of SrTiO₃–Based Photocatalysts、The 2nd Sino-Japan Young Scientist Forum on Chemistry、Chengdu (China) 2012 年 4 月 13, 14 日
- 5. 入江寛(山梨大)、太陽水素エネルギーシステム、第62回マテリアルズ・テーラリング研究会プログラム、(財)加藤科学振興会軽井沢研修所、2012年8月10日
- 6. 入江寛(山梨大)、太陽光の恵みから水素をつくる~水分解光触媒~、第307回北海道大学触 媒化学研究センターコロキウム、北海道大学触媒化学研究センター、2013年3月19日
- *7. Hiroshi Irie (Univ. of Yamanashi), Solar Hydrogen Production Utilizing Visible-Light Sensitive Photocatalysts, IUMRS-International Conference on Electronic Materials (IUMRS-ICEM 2012), Pacifico Yokohama, Yokohama (Japan), 2012 年 9 月 24-28 日
- 8. 入江寛(山梨大)、銀タンタル酸化物を用いた可視光完全水分解への取り組み、第 13 回光触 媒研究討論会、東京大学先端科学技術研究センター、2013 年 7 月 10 日
- 9. 入江寛(山梨大)、太陽の恵みを水素に変える-水分解光触媒-、第24回東海地区光電気化 学研究会、岐阜大学工学部、2013年7月26日
- 10. Hiroshi Irie (Univ. of Yamanashi)、Niobium-Doping into Silver Tantalate : Towards a Visible-Light Sensitive Overall Water-Splitting Photocatalyst、19th China-Japan Bilateral Symposium on Intelligent Electrophotonic Materials and Molecular Electronics (SIEMME' 19)、 Beijing (China)、2013 年 9 月 14-16 日
- 11. 入江寛(山梨大)、ソーラーハイドロジェン製造触媒の開発、触媒学会宇都宮支部講演会、宇都宮大学工学部、2013年11月8日
- 12. 入江寛(山梨大)、可視光下で純水を完全分解できる二段階励起光触媒の創製、第 14 回光 触媒研究討論会、東京大学先端科学技術研究センター、2014年7月8日
- Hiroshi Irie (Univ. of Yamanashi)、Photocatalytic Water-Splitting under Visible light Irradiation、 20th International Conference on Photochemical Conversion and Storage of Solar Energy (IPS-20)、Berlin (Germany)、2014 年 7 月 27-8 月 1 日
- 14. Hiroshi Irie (Univ. of Yamanashi)、A Solid-State Two-Step System for Visible Light-Induced Overall Water-Splitting、19th China-Japan Bilateral Symposium on Intelligent Electrophotonic Materials and Molecular Electronics (SIEMME' 20)、Chengdu (China)、2014年9月21日-24 日
- 15. Hiroshi Irie (Univ. of Yamanashi), Visible Light-Induced Overall Water-Splitting over Solid State Z-Scheme, Energy Materials Nanotechnology (EMN) Ceramics Meeting (SIEMME' 20), Orlando (USA), 2015 年 1 月 26 日-29 日
- 16. 入江寛(山梨大)、太陽光の恵みから水素をつくる~水分解光触媒~、第 323 回北海道大学 触媒化学研究センターコロキウム、北海道大学触媒化学研究センター、2015 年 3 月 10 日
- ② 口頭発表 (国内会議 2件、国際会議13件)
- Taiki Kitta, Yuuichiro Takimoto, Hiroshi Irie (Univ. of Yamanashi), ZnRh₂O₄ as a Hydrogen Production Photocatalyst under Visible Light、17th China-Japan Bilateral Symposium on Intelligent Electrophotonic Materials and Molecular Electronics (SIEMME' 17)、Beijing (China), 2010 年 9 月 24, 25 日
- Naoya Kumagai, Lei Ni, Hiroshi Irie(Univ. of Yamanashi), Visible-Light Sensitive Water Splitting Photocatalyst Composed of Rh³⁺ in a 4d⁶ Electronic Configuration, 17th China-Japan Bilateral Symposium on Intelligent Electrophotonic Materials and Molecular Electronics (SIEMME' 17), Beijing (China), 2010 年 9 月 24, 25 日

- 3. Hiroshi Irie (Univ. of Yamanashi)、SrTiO₃–Based Photocatalysts for Two-Step Overall Water Splitting、2011 MRS Fall Meeting & Exhibit、Boston (USA)、2011 年 11 月 28 日-12 月 2 日
- 4. Hiroshi Irie (Univ. of Yamanashi)、Novel Two-Step System Towards Photocatalytic Overall Water-Splitting、19th International Conference on Photochemical Conversion and Storage of Solar Energy (IPS-19)、California Institute of Technology, California (USA)、2012 年 7 月 29 日 -8 月 3 日
- 5. Hiroshi Irie (Univ. of Yamanashi)、Conduction Band Control of TiO₂: Toward an Efficient Visible-Light-Sensitive Photocatalyst、244th American Chemical Society National Meeting and Exposition, Materials for Health and Medicine、Pennsylvania Convension Center、Philadelphia (USA) 2012 年 8 月 19-23 日
- 6. Hiroshi Irie (Univ. of Yamanashi), Band Structure Controls of SrTiO₃ Towards Visible-Light Induced Two-Step Overall Water-Splitting, Pacific Rim Meeting on Electrochemical and Solid-State Science (PRiME 2012), Hilton Hawaiian Center, Honolulu, Hawaii (USA), 2012 年 10 月 7-12 日
- 7. Hiroshi Irie (Univ. of Yamanashi)、Nb-Doped AgTaO₃ as a Water-Splitting Photocatalyst under Visible Light、223rd ECS Meeting、Tronto (Canada)、2013 年 5 月 12-17 日
- 8. Hiroshi Irie (Univ. of Yamanashi)、Hydrothermal Synthesis of Band Structure-Controlled Silver Tantalate towards Overall Water-Splitting under Visible Light Irradiation、The 7th International Conference on the Science and Technology for Advanced Ceramics、Yokohama (Japan)、2013 年 6月 19-21 日
- 9. Hiroshi Irie (Univ. of Yamanashi)、Niobium-Doped Silver Tantalate as a Visible-Light Induced Overall Water-Splitting Photocatalyst、2013 MRS Fall Meeting & Exhibit、Boston (USA)、2013 年12月1-6日
- 10. Hiroshi Irie (Univ. of Yamanashi)、Overall Water-Splitting Photocatalyst under Visible Light; Conduction-Band-Controlled Silver Tantalate、CIMTEC 2014 - 6th Forum on New Materials、 Montecatini Terme (Italy)、2014 年 6 月 15-20 日
- 11. Hiroshi Irie (Univ. of Yamanashi)、Silver-Inserted Hetero-Junction Photocatalyst for Water-Splitting under Visible Light、248th ACS National Meeting & Exposition、San Francisco (USA)、2014 年 8 月 10-14 日
- 12. Toshihiro Takashima, Yuki Hotori, Hiroshi Irie (Univ. of Yamanashi), Development of Mn-Based Oxygen Evolution Catalysts Containing Pyrophosphate Groups, 19th China-Japan Bilateral Symposium on Intelligent Electrophotonic Materials and Molecular Electronics (SIEMME' 19), Beijing (China), 2013 年 9 月 14-16 日
- 13. Toshihiro Takashima, Yuki Hotori, Hiroshi Irie (Univ. of Yamanashi), Electrocatalytic Water Oxidation with a Manganese Pyrophosphate Compound, 247th American Chemical Society National Meeting & Exposition, Dallas (USA), 2014 年 3 月 16-20 日
- 14. Satoshi Tanigawa, Hiroshi Irie (Univ. of Yamanashi)、Hydrogen and Oxygen Evolution Photocatalysts Synthesized from Titania by Controlled Doping and Their Performance in Two-Step Overall Water Splitting under Visible Light、The 3nd International Seminar for Special Doctoral Program "Green Energy Conversion Science and Technology", International Workshop on Green Energy Conversion、Hokuto (Yamanashi)、2014 年 8 月 25-27 日
- 15. 高嶋敏宏、石川康基、入江寛(山梨大)、酸化鉄表面における酸素発生反応中間体の分光 電気化学的検討、電気化学会第82回大会、横浜国立大学(神奈川)、2015年3月15-17日
- ③ ポスター発表 (国内会議19件、国際会議24件)
- 1. 入江 寛、橘田太樹、熊谷直也(山梨大)、可視光応答型水分解光触媒の創製、第 16 回光触 媒シンポジウム、神奈川科学技術アカデミー、2009 年 12 月 2 日
- 2. 入江 寛、橘田太樹、熊谷直也(山梨大)、可視光型水分解光触媒の創製、第 17 回光触媒シンポジウム、神奈川科学技術アカデミー(神奈川)、2010 年 12 月 2 日

- Hiroshi Irie, Taiki Kitta, Naoya Kumagai (Univ. of Yamanashi)、Photocatalytic Water-Splitting under Visible Light、18th International Conference on Photochemical Conversion and Storage of Solar Energy、Seoul (Korea)、2010 年 7 月 26~30 日
- 4. Hiroshi Irie, Taiki Kitta, Naoya Kumagai (Univ. of Yamanashi), Water-Splitting over Novel Photocatalysts under Visible Light, The International Chemical Congress of Pacific Basin Societies (Pacifichem 2010), Hawaii (USA), 2010 年 12 月 15~20 日
- 5. 熊谷直也、二 ライ、入江寛(山梨大)、Rh³⁺の結晶子場分裂を利用した新規可視光水分解光 触媒の創製、第11回グリーン・サステイナブルケミストリーシンポジウム、早稲田大学、2011年6 月2,3日
- 6. 橘田太樹、滝本裕一郎、入江寛(山梨大)、可視光応答型水素生成光触媒 ZnRh₂O₄の創製、 第11回グリーン・サステイナブルケミストリーシンポジウム、早稲田大学 2011年6月2,3日
- 7.入江寛、滝本裕一郎、橘田太樹(山梨大)、可視光応答型新規水素生成光触媒ロジウム酸亜 鉛の創製と評価、第8回次世代の太陽光発電システム—岐阜県の取り組み—、2011年6月30 日-7月1日
- 8. 入江寛、原勝一(山梨大)、SrTiO3を用いた新規水分解システムの構築、第18回光触媒シンポジウム、東京大学生産技術研究所コンベンションホール(東京)、2011年12月12日
- 9. 滝本裕一郎、橘田太樹、入江 寛(山梨大)、可視光応答型水素生成 ZnRh₂O₄ 光触媒、第 18 回光触媒シンポジウム、東京大学生産技術研究所コンベンションホール(東京)、2011 年 12 月 12 日
- 10. 吉水暢治、三枝誠(山梨大)、秋山賢輔(神奈川県産技センター)、舟窪浩(東工大)、入江寛 (山梨大学)、ナロウギャップ新規水素生成光触媒□-FeSi2の水分解評価、第1回 JACI/GSC シンポジウム(第12回 GSC シンポジウム)、ベルサール神田(東京)、2012年6月12-13日
- 11. 原勝一、入江寛(山梨大)、チタン酸ストロンチウムを用いた二段階励起水分解システムの構築、第1回 JACI/GSC シンポジウム(第12回 GSC シンポジウム)、ベルサール神田(東京)、 2012年6月12-13日
- 12. Shoichi Hara, Hiroshi Irie (Univ. of Yamanashi)、Two-Step Overall Water-Splitting Based on Band Structure Controls of SrTiO₃、19th International Conference on Photochemical Conversion and Storage of Solar Energy (IPS-19)、California Institute of Technology, California (USA)、 2012 年 7 月 29 日-8 月 3 日
- 13. Masaharu Yoshimizu, Makoto Saegusa (Univ. of Yamanashi), Kensuke Akiyama (Kanagawa Industrial Technology Center), Hiroshi Funakubo (Tokyo Int. Tech.), Hiroshi Irie (Univ. of Yamanashi), Novel Hydrogen-Evolution Photocatalyst, Narrow-Gap □-FeSi₂, 19th International Conference on Photochemical Conversion and Storage of Solar Energy (IPS-19), California Institute of Technology, California (USA), 2012 年 7 月 29 日-8 月 3 日
- 14. Satoshi Tanigawa, Hiroshi Irie (Univ. of Yamanashi)、Two-Step Excitation System for Water-Splitting Using Titanium Oxide、19th International Conference on Photochemical Conversion and Storage of Solar Energy (IPS-19)、California Institute of Technology, California (USA)、2012 年 7 月 29 日-8 月 3 日
- 15. 入江寛、原勝一(山梨大)、大谷文章(北大)、チタン酸ストロンチウムを用いた新規水分解シ ステムの構築、第 19 回光触媒シンポジウム、東京大学生産技術研究所コンベンションホール (東京)、2012年12月10日
- 16. 谷川聡、入江寛(山梨大)、酸化チタンを用いた2段階励起水分解システムの構築、第 2 回 JACI/GSC シンポジウム(第12回 GSC シンポジウム)、メルパルク大阪(大阪)、2013年6月6-7 日
- 17. 吉水暢治、橘田大樹、入江寛(山梨大)、直接接合型 2 段階励起システムの創製とその光触 媒活性評価、第 2 回 JACI/GSC シンポジウム(第 12 回 GSC シンポジウム)、メルパルク大阪 (大阪)、2013 年 6 月 6-7 日
- 18. Satoshi Tanigawa, Hiroshi Irie (Univ. of Yamanashi), Two-Step Overall Water-Splitting System Composed of Only Titanium Dioxide, The 2nd International Seminar for Special Doctoral

Program "Green Energy Conversion Science and Technology", International Workshop on Green Energy Conversion、Nagano (Japan)、2013 年 9 月 2-4 日)

- 19. Masaharu Yoshimizu, Makoto Saegusa (Univ. of Yamanashi), Kensuke Akiyama (Kanagawa Industrial Technology Center), Hiroshi Funakubo (Tokyo Int. Tech.), Hiroshi Irie (Univ. of Yamanashi) 、Near-Infrared Light-Induced Hydrogen Generation of □-FeSi₂ 、The 2nd International Seminar for Special Doctoral Program "Green Energy Conversion Science and Technology", International Workshop on Green Energy Conversion、Nagano (Japan)、2013 年 9 月 2-4 日)
- 20. Yuki Hotori, Masaharu Yoshimizu, Hiroshi Irie (Univ. of Yamanashi)、Fabrication of n-Si/WO₃ Photocatalyst for Oxidative Decomposition、19th China-Japan Bilateral Symposium on Intelligent Electrophotonic Materials and Molecular Electronics (SIEMME' 19)、Beijing (China)、 2013 年 9 月 14-16 日)
- Masaharu Yoshimizu, Taiki Kitta, Hiroshi Irie (Univ. of Yamanashi), Photocatalytic Activities of Si/WO₃: Direct-connected Two-Step Systems, 19th China-Japan Bilateral Symposium on Intelligent Electrophotonic Materials and Molecular Electronics (SIEMME' 19), Beijing (China), 2013 年 9 月 14-16 日)
- 22. Toshihiro Takashima, Yuki Hotori, Hiroshi Irie (Univ. of Yamanashi), Electrochiemcal and Visible-Light-Driven Water Oxidation Using Polyanion-Based Transition Metal Compounds, University of Yamanashi International Symposium 2013, Kofu (Yamanashi), 2013 年 10 月 15 日
- 23. Masaharu Yoshimizu, Taiki Kitta, Hiroshi Irie (Univ. of Yamanashi)、Photocatalytic Activity of Directly-Connected Si/WO₃ System、The 6th Asia-Pacific Congress on Catalysis (APCAT-6)、 Taipei (Taiwan)、2013 年 10 月 13-17 日
- 24. Satoshi Tanigawa, Hiroshi Irie (Univ. of Yamanashi), Two-Step Excitation Z-scheme System for Overall Water-Splitting under Visible Light using Titanium Oxide, The 6th Asia-Pacific Congress on Catalysis (APCAT-6), Taipei (Taiwan), 2013 年 10 月 13-17 日
- 25. 高嶋敏宏、邉祐貴、入江寛(山梨大)、Design of Oxygen Evolution Catalysts Based on the Control of Itinerancy of 3d-electron、第 23 回日本 MRS 年次大会、横浜情報文化センター、横浜情報文化センター(神奈川)、2013 年 12 月 9-11 日
- 26. 高嶋敏宏、石川康基、入江寛(山梨大)、Sr₃Fe₂O₇ 電極触媒の酸素発生触媒活性における温度依存性の発現、第 20 回光触媒シンポジウム、東京大学生産技術研究所コンベンションホール(東京)、2013 年 12 月 13 日
- 27. Toshihiro Takashima, Hiroshi Irie (Univ. of Yamanashi)、"Development of Optically Transparent Oxygen Evolution Catalyst Using Manganese Pyrophosphate、Gordon Research Conference on Renewable Energy: Solar Fuels、Ventura (USA)、2014 年 1 月 19-24 日
- 28. 谷川聡、入江寛(山梨大)、酸化チタンを用いた可視光二段階励起完全水分解システムの構築、第3回 JACI/GSC シンポジウム、東京国際フォーラム(東京)、2014年5月22-23日
- 29. 小林諒也、谷川聡、高嶋敏宏、入江寛(山梨大)、銀を挿入した異種光触媒接合型可視光水 分解システムの構築、第3回 JACI/GSC シンポジウム、東京国際フォーラム(東京)、2014年5 月 22-23 日
- 30. 石川康基、高嶋敏宏、入江寛(山梨大)、Ruddlesden-Popper 型鉄酸化物を用いた酸素発生 触媒の創製、第3回 JACI/GSC シンポジウム、東京国際フォーラム(東京)、2014年5月22-23 日
- 31. 高嶋敏宏、邉祐貴、入江寛(山梨大)、R ピロリン酸マンガン化合物を用いた酸素発生触媒の 開発、第3回 JACI/GSC シンポジウム、東京国際フォーラム(東京)、2014年5月22-23日
- 32. Toshihiro Takashima, Yuki Hotori, Hiroshi Irie (Univ. of Yamanashi), Development of O₂ Evolution Catalysts Using Pyrophosphate-Bridged Manganese Compounds, 20th International Conference on Photochemical Conversion and Storage of Solar Energy (IPS-20), Berlin (Germany), 2014 年 7 月 27 日-8 月 1 日
- 33. Ryoya Kobayashi, Satoshi Tanigawa, Toshihiro Takashima, Hiroshi Irie (Univ. of Yamanashi),

Photocatalytic Water-Splitting by Silver-Inserted Heter-Junction System、20th International Conference on Photochemical Conversion and Storage of Solar Energy (IPS-20)、Berlin (Germany)、2014 年 7 月 27 日-8 月 1 日

- 34. Satoshi Tanigawa, Hiroshi Irie (Univ. of Yamanashi), Two-Step Excitation System for Overall Water-Splitting under Visible Light Using Only Titanium Oxide, 20th International Conference on Photochemical Conversion and Storage of Solar Energy (IPS-20), Berlin (Germany), 2014 年 7月 27 日-8 月 1 日
- 35. Kohki Ishikawa, Toshihiro Takashima, Hiroshi Irie (Univ. of Yamanashi), In-situ UV-Vis Absorption Spectra of Intermediate Species for O2 Evolution on the Surface of □-Fe₂O₃, 20th International Conference on Photochemical Conversion and Storage of Solar Energy (IPS-20), Berlin (Germany), 2014 年 7 月 27 日-8 月 1 日
- 36. Masaharu Yoshimizu, Makoto Saegusa (Univ. of Yamanashi), Kensuke Akiyama (Kanagawa Industrial Technology Center), Hiroshi Funakubo (Tokyo Int. Tech.), Hiroshi Irie (Univ. of Yamanashi), Solar Hydrogen Production under Near-Infrared Light Irradiation over β-Iron Silicide, 20th International Conference on Photochemical Conversion and Storage of Solar Energy (IPS-20), Berlin (Germany), 2014 年 7 月 27 日-8 月 1 日
- 37. Ryoya Kobayashi, Satoshi Tanigawa, Toshihiro Takashima (Univ. of Yamanashi), Bunsho Otani (Hokkaido Univ.), Hiroshi Irie (Univ. of Yamanashi), Visible-Light-Sensitive Silver-Inserted Hetero-Junction Photocatalyst for Pure Water-Splitting、The 3nd International Seminar for Special Doctoral Program "Green Energy Conversion Science and Technology", International Workshop on Green Energy Conversion、Hokuto (Yamanashi), 2014 年 08 月 25-27 日
- 38. Satoshi Tanigawa, Hiroshi Irie (Univ. of Yamanashi)、Overall Two-Step Water-Splitting Photocatalyst, Chromium and Tantalum Co-Doped Titanium Dioxide With Effective Cocatalyst, The 3nd International Seminar for Special Doctoral Program "Green Energy Conversion Science and Technology", International Workshop on Green Energy Conversion, Hokuto (Yamanashi), 2014 年 08 月 25-27 日
- 39. Hiromu Kuwabara, Satoshi Tanigawa, Hiroshi Irie (Univ. of Yamanashi)、Controlling the Crystal Face of Metal-Doped Titanium Oxide、The 3nd International Seminar for Special Doctoral Program "Green Energy Conversion Science and Technology", International Workshop on Green Energy Conversion、Hokuto (Yamanashi)、2014 年 08 月 25-27 日
- 40. Kouki Ishikawa, Toshihiro Takashima, Hiroshi Irie (Univ. of Yamanashi)、Creation of Oxygen Evolution Catalysts Using Ruddlesden-Popper Type Iron Oxides、The 3nd International Seminar for Special Doctoral Program "Green Energy Conversion Science and Technology", International Workshop on Green Energy Conversion、Hokuto (Yamanashi)、2014 年 08 月 25-27 日
- 41. Ryoya Kobayash, Satoshi Tanigawa, Toshihiro Takashima (Univ. of Yamanashi), Bunsho Otani (Hokkaido Univ.), Hiroshi Irie (Univ. of Yamanashi), Visible Light Sensitive Silver-Inserted Hetero-Junction ZnRh₂O₄/Ag/Ag_{1-x}SbO_{3-y} Composite for Pure Water-Splitting, 20th China-Japan Bilateral Symposium on Intelligent Electrophotonic Materials and Molecular Electronics (SIEMME'20), Chengdu (China), 2014 年 9 月 21-24 日
- 42. Satoshi Tanigawa, Hiroshi Irie (Univ. of Yamanashi), Photocatalytic Water-Splitting Activity of Chromium and Tantalum Co-Doped Titanium Dioxide, 20th China-Japan Bilateral Symposium on Intelligent Electrophotonic Materials and Molecular Electronics (SIEMME'20), Chengdu (China), 2014 年 9 月 21-24 日
- 43. 高嶋敏宏、石川康基、入江寛(山梨大)、固体塩基修飾による酸素発生触媒活性への効果の 検討、第21回光触媒シンポジウム、東京大学駒場キャンパス(東京)、2014年12月12日

(4)知財出願

①国内出願 (2件)

1.「光触媒組成物及び光触媒組成物の製造方法」、入江寛、佐藤哲也、橘田太樹、出願日 2010 年5月27日、特願 2010-121956 補正出願、出願日 2011 年 2 月 23 日、特願 2012-517171

登録日、2015年2月20日、特許第5696334号

 2.「光触媒組成及びその製造方法」、入江寛、小林諒也、栗原一貫、高嶋敏宏、出願日 2014 年 5 月 26 日、特願 2014-104982

②海外出願 (1件)

1.「光触媒組成物及び光触媒組成物の製造方法」、入江寛、佐藤哲也、橘田太樹、出願日 2011 年2月23日、PCT/JP2011/053946

③その他の知的財産権

なし

(5)受賞·報道等

①受賞

- Hiroshi Irie, American Chemical Society (ACS) 244th American Chemical Society National Meeting「Environmental Chemistry Division」 Presentation Award, Philadelphia (USA) 2012 年8月19-23日
- 2. Ryoya Kobayashi, Hiroshi Irie et al., 20th China-Japan Bilateral Symposium on Intelligent Electrophotonic Materials and Molecular Electronics (SIEMME'20) Poster Award, Chengdu (China), 2014 年 9 月 21-24 日

②マスコミ(新聞・TV等)報道(プレス発表をした場合にはその概要もお書き下さい。) なし

③その他

なし

(6)成果展開事例

①実用化に向けての展開

- 1. 先端材料技術展 2011「太陽光を利用した水素エネルギー獲得」、東京ビッグサイト、2011 年 11月9日、研究者に対し本研究で開発した太陽光水素について講演した。
- 2. 山梨大学 JST新技術説明会「太陽光を利用した水素エネルギー獲得技術」、科学技術振 興機構 JSTホール、市ヶ谷(東京)、2011年12月13日、研究者に対し本研究で開発した太 陽光水素について紹介した。

②社会還元的な展開活動

- 1.「太陽光でエネルギー・環境問題を解決しよう」 佐藤哲也、入江寛、1日体験化学教室、2010年12月25日
- 二太陽電池をつくろう」
 高嶋敏宏、入江寛、一日体験化学教室、2012年12月24日
- 「太陽電池をつくろう」
 高嶋敏宏、入江寛、1日体験化学教室、2013 年 12 月 14 日

山梨県下および近隣県の高校生を大学に受け入れ、研修実験を行なった。

§5 研究期間中の活動

5.1 主なワークショップ、シンポジウム、アウトリーチ等の活動

年月日	名称	場所	参加人数	概要
2010年9月4	スーパーサイエンス・理	山梨県立巨	40人	山梨県下の高校への出前
日	工学の世界~山梨大学	摩高等学校		講義
	高大連携講座~			
2011年5月	スーパーサイエンス・理	山梨県立巨	40 人	山梨県下の高校への出前
28 日	工学の世界~山梨大学	摩高等学校		講義
	高大連携講座~			
2011年8月5	山梨大学平成23年度	山梨大学	100 人	山梨大学の公開授業
日	公開授業			
2012年8月7	山梨大学平成24年度	山梨大学	100 人	山梨大学の公開授業
日	公開授業			
2012年11月	スーパーサイエンス・理	山梨県立韮	40人	山梨県下の高校への出前
8 日	工学の世界~山梨大学	崎高等学校		講義
	高大連携講座~			
2013年10月	スーパーサイエンス・理	山梨県立韮	40人	山梨県下の高校への出前
11 日	工学の世界~山梨大学	崎高等学校		講義
	高大連携講座~			
2013年10月	スーパーサイエンス・理	山梨県立甲	30 人	山梨県下の高校生を受け入
28 日	工学の世界~山梨大学	府南高等学		れ、研修実験
	高大連携講座~	校		
2014年8月	スーパーサイエンス・理	山梨県立甲	30人	山梨県下の高校生を受け入
20 日	工学の世界~山梨大学	府南高等学		れ、研修実験
	高大連携講座~	校		

§6 最後に

1光子励起系における材料開発、2光子励起系の新たなZスキームの構築によって、光触媒粉 末を用いた水の完全分解を達成することができた。特に後者の手法を用いることによって波長 600 nm の可視光照射下での水の完全分解に成功した。さらに同じ手法を用いれば利用波長が 700, 800 nm...と伸びる可能性があり、実際、700 nm の可視光で水を完全分解できたことを示唆する データも得られている。この水分解光触媒の究極の目標である波長 600 nm の可視光での量子収 率 30%に向けて大きな一歩であろう。

研究代表者としては、研究すべき多くの課題に対して研究室メンバーおよび共同研究者の少数で行ったため、各人それぞれが異なるテーマを行うことになり、それら成果を有機的に結び付けることに注力した。その結果、それぞれの成果が互いに貢献しあい、最終的に波長 600 nm の可視光照射下での水の完全分解に成功したと考えている。本プロジェクトには、水分解反応装置、ガス 質量分析装置など光触媒水分解評価に不可欠な装置を購入することができ非常に感謝している。 また、研究総括、領域アドバイザーの先生方から有益な助言、叱咤激励を得ながら、また戦略研究 推進部の領域担当者の適切な運営によって、円滑に研究を遂行することができた。心底より感謝 申し上げます。

図 12 水分解反応装置(本 CREST にて購入)および操作する学生