戦略的国際科学技術協力推進事業(日本-英国研究交流)

1. 研究課題名:「不揮発性アトムトランジスタを用いた低消費ロジックシステム」

2. 研究期間:平成23年 5月~平成26年3月

3. 支援額: 総額15,000,000円

4. 主な参加研究者名:

日本側(研究代表者を含め6名までを記載)

	氏名	所属	役職	
研究代表者	長谷川 剛	(独)物質・材料研究機構	主任研究者	
研究者	鶴岡 徹	(独) 物質・材料研究機構	MANA研究者	
研究者	Alpana Nayak	(独) 物質・材料研究機構	ポスドク研	
			究員	
研究者	日野 貴美	(独)物質・材料研究機構	ポスドク研	
			究員	
研究者	児玉 奈木沙	(独) 物質・材料研究機構	研究業務員	
研究者	宇南山 聡美	(独)物質・材料研究機構	研究業務員	
参加研究者 のべ 7名				

相手側(研究代表者を含め6名までを記載)

	氏名	所属	役職	
研究代表者	Hiroshi Mizu	サザンプトン大学	教授	
	ta			
研究者	Zakaria	サザンプトン大学	主任研究員	
	Moktadir			
研究者	Harold Chong	サザンプトン大学	講師	
研究者	Yoshishige	サザンプトン大学	講師	
	Tsuchiya			
研究者	Liam Boodhoo	サザンプトン大学	大学院学生	
研究者				
参加研究者 のべ 5名				

5. 研究・交流の目的

日本側チームが開発を進めていた金属酸化物系3端子素子「アトムトランジスタ」も、英国側チームが開発を進めていたナノ電気機械スイッチ素子(NEMS)も、「不揮発性」と「低消費電力」を特長とする素子である。本交流研究では、日英双方が開発する素子の開発を協力して進め、素子の混載化や機能の複合化に向けた研究を進めることで、アトムトランジスタをおもな基盤技術として、極低消費電力で動作する新たな不揮発ロジックシステムの提案・開発を行うことを目的とした。

6. 研究・交流の成果

6-1 研究の成果

アトムトランジスタの動作では、ゲート電極から供給した金属イオンがソース・ドレイン 電極近傍に拡散して濃度を増すことで伝導経路を形成、スイッチオンとなる。金属イオン の拡散速度は電子よりも遅いことに着目して研究を進めた結果、脳型コンピューターを構 成する上で不可欠なニューロン素子の動作をアトムトランジスタによって実現可能である ことを見いだした。すなわち、ニューロンの特徴的な動作である「入力情報の内部蓄積」、 「一定の入力を得た後の発火」、「発火現象の自己減衰」の3つをたったひとつの素子で実現可能であることが分かった。

また、アトムトランジスタには、ゲート電圧の大きさに依存して、揮発性と不揮発性の選択動作が可能であることが分かっていた。本交流研究において、この特長を利用した新規回路の検討を進めた結果、過去の記憶を一定条件下で呼び起こす「想起回路」の構築が可能であることが分かった。

アトムトランジスタの動作では、金属イオンの分布によって過去の入力情報が蓄積される。この動作原理を積極的に活用することで、従来素子では実現が難しい上記2つの機能開発に成功した。これらの成果は、低消費電力で高度な情報処理の実現が可能な脳型コンピューターなどの開発に資することが期待される。

6-2 人的交流の成果

相互訪問によるミーティングを毎年開催して、研究の進捗と交流の進め方について議論を深めた。このほか、国際会議やセミナーなども利用して、交流を深めた。また、本研究交流が縁で、英国の大学で博士号を取得した若手研究者が、日本側チームの所属機関にポスドク研究員として着任予定である。

7. 主な論文発表・特許等(5件以内)

相手側との共著論文については、その旨を備考欄にご記載ください。

論文	・論文の場合: 著者名、タイトル、掲載誌名、巻、号、ページ、発行	備考
or	年	
特許	・特許の場合: 知的財産権の種類、発明等の名称、出願国、出願日、	
	出願番号、出願人、発明者等	
論文	L. Boodhoo, Y. P. Lin, H. M. Chong, Y. Tsuchiya, T. Hasegawa and H.	共著
	Mizuta, 'Energy Reversible Si-based NEMS Switch for Nonvolatile	
	Logic Systems', 2013 8th IEEE Conference on Nano/Micro Engineered	
	and Molecular Systems, 558-561, 2013.	
論文	N. Kodama, T. Hasegawa, T. Tsuruoka, C. Joachim and M. Aono,	
	'Electronic state formation by surface atom removal on a MoS2	
	surface', Jpn. J. Appl. Phys., 51, 6, 06FF07-06FF07-4, 2012.	
特許	特許、ニューロン動作素子、日本、2014.2.3出願、特願2014-018374、物	共著
	質・材料研究機構、長谷川剛、鶴岡徹、伊藤弥生美、青野正和、水田博、	
	土屋良重、チョンハロルド、ブドーリアム	