2022 年度 創発的研究支援事業 年次報告書

研究担当者	古山 賢一郎
研究機関名	京都大学
所属部署名	iPS 細胞研究所
役職名	特定拠点講師
研究課題名	多細胞因子に着目した新たなリプログラミング医療の創出
研究実施期間	2022年4月1日~2023年3月31日

研究成果の概要

細胞の identity や可塑性は、発生/再生/疾患といった状況に応じて動的にスペクトラムを変化させるが、細胞間相互作用など細胞外から受ける制御機構が近年少しずつ明らかになってきた。一方、iPS 細胞作製技術の開発以降、大きく発展してきた細胞リプログラミング誘導に関する研究では、リプログラミング因子同定・エピジェネティック/RNA 発現解析など主に細胞内で起こる変化に注目する研究が多いが、non-cell-autonomous な因子である細胞間相互作用とリプログラミングの関連については未だ明らかにされていない。

本創発研究では、細胞リプログラミングを誘導するには cell-autonomous なリプログラミング因子だけでは十分ではなく、外因子である他者からの何らかの作用(細胞間相互作用)が重要であるとの仮説のもと、責任因子であるいわゆる"多細胞因子"の同定を目指す。さらに解明した細胞リプログラミング制御機構を臨床応用し、新たなリプログラミング医療の創出に挑戦する。

初年度は実験サンプルの入手やツールの再構築、実験環境のセットアップなど、研究遂行の基盤を構築した。またジュネーヴ大学のグループとの共同研究で、膵島細胞の細胞可塑性の評価に有用なツールとなる ID geneset を同定し報告した(van Gurp et al, Nat Commun. 2022)。この細胞種ごとに規定した ID を利用することで、発生期の分化段階や、リプログラミング課程においても細胞 identity が正確に把握できるようになり、今後の本研究推進が期待できる。