
 - 268 -

研究課題別評価

１．研究課題名： 超計算：ソフトウェア自動生産のための新領域探求

２．研究者氏名： Robert GLUECK

３．研究の狙い：

The research explored new frontiers of automated software production. The goal is to build programs

that build program. The scientific approach taken in this project is unique in that I investigate a

combination of three fundamental principles: (1) three basic transformation operations on programs

(program composition, program inversion, and program specialization), (2) multiple layers of these

transformations, and (3) their portability to new languages via interpreters. I study these principles using

semantically clean functional languages.

４．研究結果：

Our goal is to explore the frontiers of automatic software production based on a combination of three

fundamental insights.

(1) Three operations. Our thesis, based on a structural analysis of formal linguistic modeling as

explained in our earlier publication [13], is that three fundamental operations are needed: program

composition, program inversion, and program specialization. We found that these operations have to

be performed efficiently and effectively by tools for software production to be truly powerful. Of

these, program specialization, also known as partial evaluation, has been studied intensely and is the

best understood method.

(2) Layers of metasystems solve a wide spectrum of transformation problems using only the three

types of operations listed in (1). A cornerstone in this development are the Futamura projections

which make use of two metasystem layers of program specialization. We examined novel

meta-system structures including the specializer projections, multi-level generating extensions and

a new metasystem scheme for program composition and program inversion (cf. [2, 7, 12]).

 p y p y

 invint x invtrans p-1 x

(1) Inverse interpreter (2) Inverse translator

Figure 1: Two tools for solving inversion problems (where [[p]] x = y)

3. New programming languages for the construction software will continue to emerge rapidly as

 - 269 -

information technology evolves (cf. the recent phenomenal success of Java). There is no evidence

that any particular programming language will be the last in this series. Solutions for (1) and (2) must

be able to accommodate languages as they are needed to be truly successful. Semantics modifiers,

a novel concept for robust semantics [2], promise language independence for composition, inversion,

and specialization.

We have identified these three principles as important through our research. Existing approaches to

automatic program transformation have only considered part of the operations in (1) or used only

restricted forms of metasystem schemes (2). Semantics modifiers (3) are original and, thus, have not

been investigated before.

Our research goal was to advance the theory and methods for automatic program transformation

based on the principles identified above, and to study the computational feasibility of our scientific ideas

for theoretically clean, functional languages. We approached these scientific questions partly by

theoretical means and partly by experimental work. What follows is a technical overview. References to

publications are provided for more detailed information.

A. Inversion of functions is a fundamental concept in mathematics, but the inversion of programs

has received little attention in software science (with the exception of logic programming). Programs

that are inverse to each are often used. Perhaps the most common example are programs for

compressing and decompressing files sent via networks. Today, programs for both transformations need

to be written manually, but this is not necessary. One program should be sufficient, and then have a

program inverter derive the other program automatically.

Inversion problems can be solved in two ways, either by an inverse interpreter or by a program

inverter. Both software tools are illustrated in Fig. 1. We studied both approaches for first-order

functional languages. A difficulty for program inversion is that traditional programming languages do not

support computation in both directions and that there is little known about the automatic generation of

inverse programs. Logic programming is suited to find multiple solutions and can be regarded as a

method for inverse interpretation, but only for relational programs. A detailed description of these

notions can be found in our publications [1, 2, 3].

We studied the Universal Resolving Algorithm (URA), a powerful method for inverse computation for

first-order functional programs. The algorithm was implemented in Scheme for a typed dialect of

S-Graph, and shows some interesting results for the inverse computation [2, 3]. The algorithm is

powerful enough to deal with multiple solutions. We also showed that the algorithm is sound and

complete, and computes each solution in finite time [4]. Due to the interpretive nature of the algorithm,

inverse computation by URA is slower than using an inverse program.

We analyzed the Korf-Eppstein method (short, KEinv) for automatic program inversion of first-order

functional programs [10] and formalized the transformation using a structural operational semantics. It

is one of only two existing general-purpose automatic program inverters that were ever built. This was

the basis for studying the generation of inverse programs.

Recently we proposed [11] a method for automatic program inversion in a first-order functional

 - 270 -

programming language that achieves transformations beyond KEinv. One of our key observations is that

the duplication of values and testing their equality are two sides of the same coin in program inversion.

This led to the design of a new self-inverse primitive function that considerably eases the inversion of

programs. We illustrated the method with several examples including the automatic derivation of a

program for run-length decoding from a program for run-length encoding. This derivation is not possible

with other methods, such as KEinv. Another example, more theoretical in nature, is the inversion of a

program fib that computes pairs of neighboring Fibonacci numbers; for instance, fib(2)=<2, 3>. The

automatic inversion is successful and produces an inverse program fib-1; for instance, fib-1(<34, 55>)=8.

B. Composition The construction of complex software by sharing and combining components in

order to ease software construction is the main focus of many recent approaches. But abstraction

layers do not come for free: they add redundant computations, intermediate data structures, extra

run-time error checking. Program composition is a program optimization that can remove such

redundancies, and allows the composition of software parts without paying an unacceptably high price in

terms of efficiency.

We examines the problem to transform functional programs, which intensively use append functions

into programs, which use accumulating parameters instead (like efficient list reversal) [14]. We studied

an (automatic) transformation algorithm for our problem and identify a class of functional programs,

namely restricted 2-modular tree transducers, to which it can be applied [15]. We showed how

intermediate lists built by a selected class of functional programs, namely “accumulating maps”, can be

deforested using a single composition rule. For this we introduced a new function ‘dmap’, a symmetric

extension of the familiar function ‘map’. While the associated composition rule cannot capture all

deforestation problems, it can handle accumulator fusion of functions defined in terms of ‘dmap’ in a

surprisingly simple way. For this research direction we conclude, that automatic, non-trivial composition

remains a challenging research problem for the future. Possibly, program composition the most difficult

of the three operations to achieve in an automatic and general fashion.

C. Semantics modifiers A key ingredient of our approach are semantics modifiers because they

allows the design of general and reusable program transformers which make use of results of task A

and B, in principle, portable to other programming language.

 - 271 -

 intTM invintTM

 intLAM invintLAM
 specialize
 invmodTSG ＋ intFLC → invintFCL

intJBC invintJBC

semantic modifier :
inversion semantics

for P

・・・ ・・・

 intTSG invintTSG

 standard semantics
for Q in P

inversion semantics
for Q

Figure 2: Semantics modifier + standard semantics = non-standard semantics.

We developed a mathematical theory for non-standard semantics and examined the meaning of

several non-standard interpreter towers [1]. Our results suggest a technique for the implementation of

a certain class of programming language dialects by composing a hierarchy of non-standard interpreters.

Based on this theory, we experimented [12] with the Universal Resolving Algorithm (see A above) to

prototype programming language tools from robust semantics: we used automatic program

specialization to turn interpreters into inverse interpreters for several small languages for which no

hand-written tools exist (including interpreters for an applied lambda calculus, an imperative flowchart

language, and a subset of Java bytecode). This is illustrated in Fig. 2.

This application of self-applicable program specializers is remarkable since it suggest a new use of

program specialization that is different from the familiar Futamura projections. Also, we studied powerful

specialization methods [6], loop peeling to increase the accuracy of program analysis [16] and edited a

special issue on program transformation and partial evaluation [9].

For our experiments we needed to analyze the power of program specialization and have done so

for online and offline partial evaluation [5], for the Futamura projections [8] and binding-time

improvements [7].

Despite practical successes with the Futamura projections, it has been an open question whether

target programs produced by specializing interpreters can a lways be as efficient as those produced by a

translator. We showed that, given a Jones-optimal program specializer with static expression reduction,

there exists for every translator an interpreter which, when specialized, can produce target programs

that are at least as fast as those produced by the translator. We call this class translation universal

specializers. We also showed that a specializer that is not Jones-optimal is not translation universal. In

a second step we examined Ershov’s generating extensions and introduced the class of generation

universal specializers. We answered these questions on an abstract level, independently of any

particular program specializer. We were interested in statements that are valid for all specializers, and

have identified such conditions.

In another study about the strength of program specializers, we showed that the accuracy of online

 - 272 -

partial evaluation, or polyvariant specialization based on constant propagation, can be simulated by

offline partial evaluation using a maximally polyvariant binding-time analysis [5]. We showed [7] that

Jones optimality, which was originally aimed at the Futamura projections, plays an important role in

binding-time improvements. The main results show that, regardless of the binding-time improvements

which we apply to a source program, no matter how extensively, a specializer that is not Jones-optimal

is strictly weaker than a specializer which is Jones optimal.

５．自己評価：

Our research centered around three important principles (three program operations, metasystem

layers, adaptability). In particular, we examined inverse computation theoretically and experimentally, and

adapted an algorithm to several programming language subsets by automatic program specialization,

including a small subset of Java Bytecode. We characterized the accuracy of online and offline

specialization [5] and identified the conditions for strong binding-time improvements [7] and the

translation universality [8] of Futamura projections. We proposed an automatic method for program

inversion that is stronger in some important aspects than other inversion methods and shows some

remarkable results. [10]. For program composition, attribute grammars are promising and we have done

steps in this direction [14,15], but conclude that the fundamental problem of accumulator fusion

remains a challenging research task for future work.

We found that there is no theoretical limit to the translation power of the Futamura projections

provided a specializer with static expression reduction is also Jones-optimal and introduced the class

of translation universal specializers. We believe that the power to perform universal computations is

another property for the theoretical power of a program specializer. Whether the results can be adapted

to other non-standard interpreter hierarchies as developed in [1] is a topic for future work. It is quite

possible that the results [7,8] can be carried to the next metasystem level. We also want to explore the

conditions for generating translators and other program generatorsfrom generation universal

specializers.

Our experiments applied the idea of prototyping programming language tools from robust semantics

[12]: we produced automatically inverse interpreters for programming languages for which no inverse

interpreter existed before. Even though these languages are small, the results demonstrate that it is

possible in practice with existing partial evaluators. To the best of our knowledge, these are the first

results regarding this use of partial evaluation. Our results show that a speedup of an order of

magnitude can be achieved for some interpreters. Limiting factors of offline partial evaluation was the

need for binding-time improvements and the lack of generalization.We believe there is still more to be

gained by partial evaluation and want to investigate stronger specialization techniques, such as [6].

A main difficulty in the generation of inverse programs are conditionals and recursive functions. We

now try to solve some of these difficulties through the application of parsing techniques to program

inversion. Tasks for future work also include the refinement of the well-formedness criteria [10]. We

have not exploited mathematical properties of operators during the inversion. A possible extension of

our techniques may involve the use of constraint systems for which well-established theories have

been developed in other areas.

 - 273 -

We described an algorithm for inverse computation, studied its organization and structure, and

illustrated our implementation with several examples [3,12]. Methods for detecting finite solution sets

and cutting infinite branches can make the process of inverse computation terminate more often (while

preserving soundness and completeness) and may make the method more practical. Techniques from

program transformation and logic programming may prove to be useful in this context, and we are now

taking first steps into this direction. We also want to explore further its portability to new languages via

semantics modifies [1,2].

６．研究総括の見解：

仕様からソフトウェアを自動生成する方法に関してはいくつかのアプローチがあるが、Glueck 研究

者は、正しいが効率の悪いプログラムをプログラム変換の手法により効率を上げる方法を研究した。

この方法は従来から多くの研究が続けられ、多くの成果が報告されているが、未だ実用的な解決が得

られていない難問である。Glueck研究者は、プログラム変換における基本変換である、合成、逆転、特

殊化について科学的に質の高い研究を行い、この領域の発展に貢献した。また、評価の高い国際会

議や論文誌にて多数の論文発表を行った。特に、プログラム逆転や特殊化については非常に優れた

結果を出している。もちろん、これらの結果によっても実用的な問題が解ける段階にはなっていないが、

そのための基礎となる理論的、科学的貢献は大きい。

７．主な論文等〔References (international)〕:

1. S. M. Abramov and R. Gluck. Combining semantics with non-standard interpreter hierarchies. In S.

Kapoor and S. Prasad, editors, Foundations of Software Technology and Theoretical Computer

Science. Proceedings, Lecture Notes in Computer Science, Vol. 1974, pages 201?213.

Springer-Verlag, 2000.

2. S. M. Abramov and R. Gluck. From standard to non-standard semantics by semantics modifiers.

International Journal of Foundations of Computer Science, 12(2):171?211, 2001.

3. S. M. Abramov and R. Gluck. Principles of inverse computation and the universal resolving

algorithm. In T. A. Mogensen, D. Schmidt, and I. H. Sudborough, editors, The Essence of

Computation: Complexity, Analysis, Transformation, Lecture Notes in Computer Science, Vol. 2566,

pages 269? 295. Springer-Verlag, 2002.

4. S. M. Abramov and R. Gluck.The universal resolving algorithm and its correctness: inverse

computation in a functional language. Science of Computer Programming, 43(2-3):193?229,

2002.

5. N. H. Christensen and R. Gluck. Offline partial evaluation can be as accurate as online partial

evaluation. ACM TOPLAS, to appear, 2003.

6. Y. Futamura, Z. Konishi, and R. Gluck. WSDFU: Program transformation system based on

generalized partial computation. In T. Mogensen, D. Schmidt, and I. H. Sudborough, editors, The

Essence of Computation: Complexity, Analysis, Transformation, volume 2566 of Lecture Notes in

Computer Science, pages 358?378. Springer-Verlag, 2002.

7. R. Gluck. Jones optimality, binding-time improvements, and the strength of program specializers. In

Proceedings of the Asian Symposium on Partial Evaluation and Semantics-Based Program

 - 274 -

Manipulation, pages 9?19. ACM Press, 2002.

8. R. Gluck. The translation power of the Futamura projections. In M. Broy and A. V. Zamulin, editors,

Perspectives of System Informatics. Proceedings, volume 2890 of Lecture Notes in Computer

Science, pages 133-147. Springer-Verlag, 2003.

9. R. Gluck and Y. Futamura. Special issue on partial evaluation and program transformation. New

Generation Computing, 20(1):1?124, 2002.

10. R. Gluck and M. Kawabe. An automatic program inverter for Lisp: potential and limitations. In Y. Fu

and Z. Hu, editors, Proceedings of the Third Asian Workshop on Programming Languages and

Systems, pages 230?245. Shanghai Jiao Tong University, 2002.

11. R. Gluck and M. Kawabe. A program inverter for a functional language with equality and

constructors. In A. Ohori, editor, Asian Symposium on Programming Languages and Systems.

Proceedings, volume 2895 of Lecture Notes in Computer Science, pages 246-264. Springer-Verlag,

2003.

12. R. Gluck, Y. Kawada, and T. Hashimoto. Transforming interpreters into inverse interpreters by

partial evaluation. In Proceedings of the ACM SIGPLAN Workshop on Partial Evaluation and

Semantics-Based Program Manipulation, pages 10?19. ACM Press, 2003.

13. R. Gluck and A. V. Klimov. Metacomputation as a tool for formal linguistic modeling. In R. Trappl,

editor, Cybernetics and Systems ’94, volume 2, pages 1563?1570. World Scientific, 1994.

14. K. Kakehi, R. Gluck. and Y. Futamura. On deforesting parameters of accumulating maps. In A.

Pettorossi, editor, Logic Based Program Synthesis and Transformation. Proceedings, volume 2372

of Lecture Notes in Computer Science, pages 46?56. Springer-Verlag, 2002.

15. A. Kuhnemann, R. Gluck. and K. Kakehi. Relating accumulative and non-accumulative functional

programs. In A. Middeldorp, editor, Rewriting Techniques and Applications. Proceedings, Lecture

Notes in Computer Science, Vol. 2051, pages 154?168. Springer-Verlag, 2001.

16. L. Song, R. Gluck and Y. Futamura. Loop peeling based on quasi-invariance/ induction variables.

Wuhan University Journal of Natural Sciences, 6(1-2):362?367, 2001.

