1.研究テーマ

(1)研究領域 : 地球変動のメカニズム

(2) 研究総括 : 浅井 冨雄

(3) 研究代表者 : 東京都立大学大学院、教授、梶井 克純

(4) 研究課題名 : 化学的摂動法による大気反応機構解明

- ラジカル測定を中心として-

(5) 研究期間 : 平成 11 年 11 月~平成 17 年 3 月

2. 研究実施の概要

人間活動の活性化に伴い多くの反応性化学物質が大気中に放出されてきた。その結果と して大気中での光化学反応により毒性の高い光化学オキシダント(オゾン)や酸性雨の原因 物質である硝酸や硫酸が生成し我々の生活を脅かしている。これらの有害物質がどのよう な反応機構でどのくらい大気中で作られてくるのかを正確に把握することは精密な大気質 の将来予測と制御戦略を構築する上で最も重要な課題である。とくに対流圏オゾンの増加 は着実に進行しており生態系への毒性や地球の温暖化といった問題を引起している。本プ ロジェクトでは対流圏のオゾン増加のメカニズム解明に焦点をあてて、大気化学反応の中 心的役割を担っていると考えられている反応性微量ガスの濃度測定装置の開発を行い、総 合的な観測および OH ラジカルの大気寿命測定を通して大気反応機構解明を目指してきた。 大気中での化学物質の動態を詳しく知るためには対象物質あるはその前駆物質の大気中 への排出、大気中での化学反応過程および大気の輸送過程が明確に記述されることが必要 となる。化学反応過程については OH ラジカルとの反応が初期過程となる場合が多い。OH ラジカルと一酸化炭素が反応すれば HO2 ラジカルが、また揮発性有機化合物(VOC)と反応 すればRO2ラジカルが生成し一酸化窒素(NO)を酸化する。これらの反応でHOx(OHやHO2) ラジカルが再生し次の反応を引起す。この反応により NO は二酸化窒素(NO2)に酸化され NO₂ は光化学的にオゾンを生産する。この一連のラジカル連鎖反応機構の実大気中での実 証実験は大変重要であるが、ラジカルの高い反応性や希薄であることから困難であった。 また、夜間は NO_2 がさらにオゾンにより NO_3 まで酸化され、 NO_2 と反応し N_2O_5 が生成し、 硝酸となり大気を酸性化すると考えられてきたが、NO3やN2O5を実測する手段が無かった ことからモデルによる推定しかなされてこなかった。これらの一連の反応機構を図1に示 す。本プロジェクトでは日中および夜間の大気反応機構解明を目指し、オゾン前駆体物質 の測定と濃度特性、窒素酸化物の化学的変質過程解明、化学摂動法による大気酸化過程の 解明の3つのサブテーマを設定し研究を進めた。図1の中で赤、青、および緑で示した化 学種について、新たな手法による測定装置を開発しそれらを用いて実大気計測を行った。

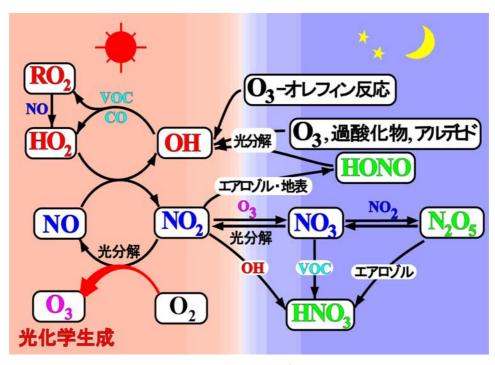


図1 大気反応機構概略図

オゾン前駆物質の測定と濃度特性では、CO やオゾンのモニタリング装置を都市および遠 隔地に設置し長期観測を行った。都市の測定は典型的な都市郊外地域である東京都立大学 キャンパス内(八王子市南大沢)で行った。ユーラシア大陸のバックグランド濃度や長距離 輸過程の情報を得るためにリモートなステーション(母子里(北海道)、八方尾根(長野)、辺 戸岬(沖縄)および父島(小笠原))での長期観測も行った。前駆物質では CO と共に VOC が重 要となる。VOC は化石燃料の蒸発や燃焼による人間活動起源に加えて、イソプレンやテル ペン類に代表される植物起源のものもある。また、大気中で2次的に生成してくる酸素を 含む化合物(OVOC)もあり、これらを系統的に定量するためにガスクロマトグラフィーによ る分析に加えて陽子移動反応による OVOC の測定装置を導入し、約 60 種類の化学種が測 定できるシステムを構築した。人為起源の汚染物質影響に加えてシベリアの森林火災が大 気質へ与える影響を調べるため人工衛星データの解析を行った。その結果火災による NOx(NO, NO₂)やCOの排出量は化石燃料燃焼と同程度でありアジアの大気質に対し大きな 影響を与えていることが判明した。ユーラシア大陸から排出された汚染物質の太平洋への 輸送と海洋大気の酸化能の評価を行うことを目的として船舶による観測も実施した。冬季 における大陸からの輸送過程では汚染物質の濃度を支配しているのはバックグランドとの 混合過程であり、大気濃度は汚染地域からの輸送時間と明確な相関があることが明らかと なった。陸生植物の影響の無い純粋な海洋大気の酸化能を調べたところ生物起源の VOC の 影響があり硫化ジメチル(DMS)の酸化過程に影響があることが明らかとなった。

窒素酸化物の化学的変質過程解明では大気中 NOx の濃度変換過程を精密に調べる目的 から、レーザー誘起蛍光(LIF)法による NO2濃度測定装置の開発を行い、1 分間の積算で 2 pptv まで測定できる世界最高水準の装置を開発した。また NO を酸化する総過酸化ラジカ ル濃度([HO₂]+Σ[RO₂])の超高精度測定装置の開発も行った。化学増幅法と LIF 法を駆使した ユニークな原理を用い1分間の積算で2 pptv まで測定できる装置を開発した。これらの装 置を用い都市大気において O₃-RO₂-NOx の光定常状態について検討した結果、NO の酸化過 程として新たな XO の存在や NO2 の発生源の必要性が示唆され、オゾン生成速度に大きな 影響を与える可能性があることが明らかとなった。夜間の NO3 ラジカルおよび N2O5 が測 定できる装置を新たに開発した。LIF 法を用い NO_3 ラジカルを測定するもので、 N_2O_5 を測 定する場合は大気を熱分解セルに通し N_2O_5 を分解しそれにより生成した NO_3 を測定する ことで N_2O_5 の大気濃度が測定できるものであり、1 分間の積算で 6 pptv まで測定できる装 置を開発した。 東アジアで初めて N2O5 の測定が行われ、 モデル計算の結果エアロゾルによ る N₂O₅ の消失過程が示され、東京の典型的なエアロゾル表面密度を用いて NOx の消失過 程について見積もると日中に NO_2+OH で硝酸となる過程とほぼ同程度の寄与が N_2O_5 経由 で起こっていることが初めて明らかとなり、NOxの大気寿命が従来の見積もりより大幅に 短くなる可能性が指摘された。

OH ラジカル濃度は大気の酸化能を示す大変重要な情報である。そこで HOx ラジカル濃度が測定できる LIF システムを開発した。1 分間の積算で 2×10^6 cm⁻³ の OH ラジカルが検出できる装置の開発に成功し大気中の HO_2 ラジカル計測は実現した。 HO_2 計測ではセルに NO を添加することにより HO_2 +NO \rightarrow OH+NO $_2$ の反応を利用し HO_2 を全て OH に変換して測定する手法を採用した。夏季の都市大気を計測したところ夜間に数 pptv の HO_2 ラジカルが存在することが明らかとなり、上記の化学増幅法による RO_2 観測でも同様の結果が得られており、夜間のラジカルの発生源として検討した結果オゾン-オレフィン反応だけでは不十分で NO_3 ラジカルと VOC の反応の重要性が示唆された。OH ラジカルの大気濃度は生成

過程(オゾンの光分解に続く水蒸気との反応、亜硝酸の光分解、過酸化水素の光分解、オゾ ンとオレフィインの反応および HO, ラジカルと NO の反応など)と消失過程(オゾン、NO、 NO₂、VOC、SO₂ などの反応)のバランスにより規定されている。都市域での大気の酸化能 について議論するためには OH ラジカルの生成と消失過程を独立に評価する必要がある。 生成過程についても複数の反応が関与しており、簡単に定量することは困難である。一方 消失過程では VOCs との反応にいたっては数百種類の化学物質を考慮する必要がある。こ れまでの大気光化学理論では OH ラジカルの消失過程については数十種類の VOCs を考慮 することで進められてきた。OH ラジカルの濃度測定や生成・消失過程を独立して議論す ることは行はれてこなかった。本研究では大気中の OH ラジカルの大気寿命を測定するこ とで OH ラジカルの消失過程を独立に議論できる手法(化学摂動法)について提案した。具体 的には大気中に紫外パルスレーザーを照射し能動的に OH ラジカルを生成させる。パルス 的に生成した OH ラジカルは種々の大気化学成分と反応しながら減衰していくので、その 減衰を実時間で捕捉することで OH ラジカルの大気寿命を測定するというものである。こ のようなレーザーフラッシュ・ポンプ-プローブ法による OH ラジカル寿命測定装置の開発 に成功し東京都立大学周辺大気の観測を行った。70種類におよぶ化学物質の同時測定から 計算による OH 寿命と実測の比較を行ったところ、冬季は両者が一致するものの夏季およ び春季には 3-5 割ほど実測が短くなり未知なる OH の反応相手の存在が示唆された。計算 との不一致量とさまざまな化学物質の相関プロファイル分析から大気中で 2 次的に生成し てくる OVOC と良い相関があることが判明し、未知なる OH ラジカルの反応相手としてこ れらの化合物の可能性が指摘された。最後に OH ラジカルの大気寿命測定から導かれるオ キシダントポテンシャル(1個のOHラジカル分子から生み出しうる積算過酸化ラジカル量) を定義し大気質の良い診断の指標となることを提案した。東京郊外に位置する東京都立大 学において 1 年間にわたる OH 寿命およびその他の化学物質の総合観測からオキシダント ポテンシャルを調べ、未知なる OH の反応相手を考慮するとオゾンの生成量は数倍大きく なることを示した。また、週末効果(週末にオキシダントが増加する現象)について検討し た結果、オキシダントポテンシャルを用いて合理的に説明できることを示した。

3. 研究構想

大気の化学反応系は多数の化学種と非常に複雑に絡み合った反応システムから成り立っている。中でもラジカル化学種は、大気を構成している化学種に比べてはるかに稀少であるにも関わらず、大気反応過程の重要な支配因子となっている。例えば OH ラジカルは対流圏オゾンの生成過程において反応連鎖体であり、硫黄酸化物や窒素酸化物と反応し大気の酸性化をもたらし、地球温暖化気体と反応することによりその大気寿命を規定していると考えられている。本プロジェクトでは対流圏のオゾン増加のメカニズムに焦点をあてて、大気化学反応の中心的役割を担っていると考えられている反応性微量ガスの濃度測定装置の開発を行い、総合的な観測および OH ラジカルの大気寿命測定を通して大気反応機構解明を目指した。

オゾン前駆物質の長期測定を遠隔地で行い、ユーラシア大陸のバックグランド濃度および季節変動要因について知見を得ることを目指した。CO と共に重要なVOC の濃度測定システムの構築を行い、対象化学種の拡大と観測の時間分解能向上を目指した。シベリアの森林火災の影響評価や船舶による純粋な海洋大気の計測を通して汚染物質の輸送過程や酸化過程について知見を得ることを目指した。窒素酸化物の化学的変質過程を調べるために NO_2 、 NO_3 および N_2O_5 濃度測定装置の開発を目指した。NO の酸化過程を調べるために総過酸化ラジカル濃度($[HO_2]+\Sigma[RO_2]$)測定装置の開発を計画した。定常状態にある実大気にパルス的に強い化学摂動を人為的に与えてその自然応答を調べることによりOH ラジカルの大気寿命を決定できる装置の開発を計画した。これらの開発したラジカル計測装置によるラジカル計測や反応性微量成分気体の総合観測により大気化学反応理論の検証を行うことを目的とし以下に示す研究項目を設定した。

研究項目

1) オゾン前駆体物質の測定と濃度特性

- 1.1. VOC 測定装置の確立
- 1.2. 都市大気中の VOC 測定
- 1.3. バックグランド大気と長距離輸送
- 1.4. シベリア森林火災の影響
- 1.5. 海洋大気の酸化能

2) 窒素酸化物の化学的変質過程解明

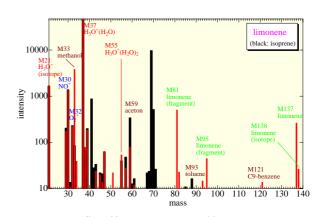
- 2.1. LIF 法による NO₂測定
- 2.2. 化学増幅-LIF 法による過酸化ラジカル全量(ΣRO₂)測定
- 2.3. NOx の光化学定常状態
- 2.4. LIF 法による NO₃ および N₂O₅ の測定
- 2.5. 夜間都市大気における NOx 消失の評価

3) 化学摂動法による大気酸化過程の解明

- 3.1. OH ラジカル大気寿命測定装置の開発
- 3.2. 都市大気総合観測
- 3.3. 未知なるOH反応相手
- 3.4. オキシダントポテンシャル(大気質診断に向けた指標)
- 3.5. オゾンのウイークエンド効果

4. 研究成果

4.1 オゾン前駆体物質の測定と濃度特性


大気反応機構解明において、ラジカル計測に加えてオゾン前駆物質などの比較的安定であるが大気反応に深く関与する大気微量成分の測定も必要である。大気中に比較的多量にあり濃度変動が大きく大気化学反応での寄与が大きい物質である一酸化炭素(CO)、オゾン(O3)、二酸化硫黄(SO2)などは既存の測定装置が利用できるが、測定環境に従った仕様変更および自動化などを行う必要がある。例えば CO 計測では大気中の水蒸気の濃度変動を考慮する必要があった。このような既存の装置の性能評価と仕様変更を行いフィールドに設置した。これらに加えて揮発性有機化合物(VOC)の測定手法を確立した。ガスクロマトグラフ分析法と陽子移動反応型質量分析法を用い約 60 種類の VOC が測定できるシステムを構築した。これらの測定装置を用い都市の大気モニタリングを行った。ユーラシア大陸のバックグランド濃度や長距離輸過程の情報を得るためにリモートなステーション(母子里(北海道)、八方尾根(長野)、辺戸岬(沖縄)および父島(小笠原))での長期観測も行った。キャニスターによるグラブサンプリングにより VOC 測定を行った。人為起源の汚染物質影響に加えてシベリアの森林火災が大気質へ与える影響を調べるため人工衛星データの解析を行った。ユーラシア大陸から排出された汚染物質の太平洋への輸送と海洋大気の酸化能の評価を行うことを目的として船舶による観測も実施した。

4.1.1. VOC 測定装置の確立

VOC は大気中化学反応において、光化学オゾン生成への寄与、エアロゾル生成への寄与など多くの役割を果たしている。しかし大気中では非常に多くの種類が存在し、特性や反応性はものによって異なっている。また、発生源も自動車の排気ガスや燃料の蒸発といった人為活動によるものから、植物から多量に放出されるテルペンやイソプレンなどさまざまで、都市のみならず人為起源汚染を免れた地域においても重要である。これらの VOC をできる限り多種にわたって測定することが大気化学観測において望まれる。本プロジェクトでは複数の手法で VOC 測定ができるようにした。測定対象の拡大と測定の高速度化を念頭にシステムを構築した。濃縮された大気をガスクロマトグラフィー(GC)で分離し水素炎検出器(FID)にて検出する方法は一般的で、定量性にすぐれている。しかし、GC の保持時間だけから物質を同定するため複数種類の化学種を単一と誤ることもありえる。数多くの種類を確実に分けて測定するため、ガスクロマトグラフィー質量分析検出器(GC-MS)を導

入した。この結果炭化水素に加えてハロカーボン類についても定量分析が可能となった。また、大気の濃縮過程も冷媒として液体窒素に加えて液化炭酸の可能性についても検討した。

アルコールやアルデヒドなど酸素を含んだ含酸素揮発性有機化合物(OVOC)は比較的多量に大気中に存在しており、大気化学反応における重要性が認識されつつある。極性が高いことからカラムによる分離には困難がともなうが、新規に開発された

図 4.1.1 典型的な PTR-MS の質量スペクトル例

陽子移動反応型質量分析計(PTR-MS)を導入 することにより OVOC の測定も可能になった。 また、通常のGCを用いたVOC測定では1検 体の測定では数十分~1 時間ほど分析に時間 が必要で、時間分解能をあげることができな かったが、PTR-MS は数秒以下で数種類の VOC を測定することが可能であり、濃度変動 の激しい都市大気の光化学反応などの研究に おいて最も有利な観測を行うことができる。 PTR-MS は高時間分解能で VOC を測定できる 優れた装置であるが、成熟した装置とは言い 難く装置特性を評価する必要があった。図 4.1.1 にテルペン類であるリモネンを測定した ときのマススペクトルを示す。試薬イオンと して生成した H₃O⁺の同位体(M21)、その水ク ラスター(M37,M55)、 $NO^{+}(M30)$ 、 $O_{2}^{+}(M32)$ は 常に見られるピークである。ソフトなイオン 化法を用いているため、基本的にはフラグメ ントが押さえられた単純なピークが得られる ことになる。しかし陽子移動反応が大きな発 熱反応の場合生成イオンの余剰エネルギーで 分解が促進される場合がある。テルペンなど の場合は M137 に検出される親イオンのほか フラグメンテーションを起こし M81 や M95 にもピークがみられる。これら各物質に対応 するピークと反応イオンである H₃O⁺との比

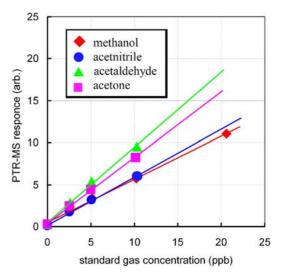


図 4.1.2 陽子移動反応質量分析計の検量線

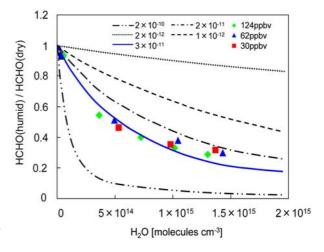


図 4.1.3 陽子移動反応質量分析計における HCHO 信号の水蒸気依存性

から濃度を求めることになるが、キャリブレーションが必要となる。とくにOVOCについては測定がこれまで困難であったこともあり、拡散チューブを用いた方法や混合ガスを用いた方法などを用いてキャリブレーションを行った。図 4.1.2 に OVOC の濃度を変えたときの PTR-MS の応答を示す。広い範囲にわたり直線性を持つ応答が得られることが分かるが、それぞれの物質についての感度が異なる。また、この感度は装置の運転状況にも影響をうけて変動し、観測時にはキャリブレーションを前後に行うべきであることが分かった。また、OVOCでもエタノールについては感度が非常に低く、実際的な測定は困難であることが分かった。ホルムアルデヒド(HCHO)については水蒸気によるイオン化の逆反応が進行してしまうため、これまで PTR-MS での測定はできないとされてきた。しかし水蒸気依存性の測定実験を行い、ボックスモデル計算による検討を行った(図 4.1.3)。水蒸気の増加とともに HCHO の感度は低下する傾向が実測結果から得られたが、これはモデル計算での傾向とも一致をしており、水蒸気濃度補正をすることにより実測の大気濃度を算出することができることが分かった。

都市大気において GC での測定と PTR-MS での測定を同時に行った。GC による VOC の 測定は信頼できる測定結果が得られていると考えられる。同時に測定することで PTR-MS が実大気を正しく測定できるかどうか検証をすることができる。例としてベンゼンの測定

結果を図 4.1.4 に示す。PTR-MSでは定期的にゼロガスを導入しているが、両者の濃度変動および絶対値は良く合っている。他の物質についても濃度変動については一致したが、絶対値にいくらか差が出る場合があり、PTR-MSの測定値は GCでの同時に測定したデータを用いて補正するのが適当である。GCの測定が難しいOVOCについては既知濃度の標準ガスを用いてキャリブレーションを行うようにした。標準ガスボンベは拡散チューブを用いた他の測定法でクロスチェックを行

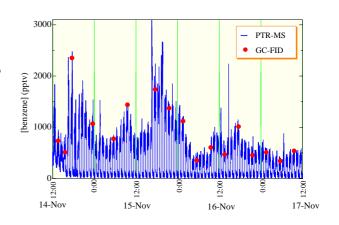


図 4.1.4 東京都立大学キャンパスで採取した 大気中のベンゼンの濃度変動

い、値の補正をおこなった。オゾン生成にかかわる微量気体成分、とりわけさまざまな種類がある VOC を測定することができるようになり、ラジカルの化学反応に密接に関連する物質濃度変化からラジカル濃度変動について議論する下地が出来上がった。これらの手法により 61 種類におよぶ VOC の濃度分析が可能となった。表 4.1.1 に代表的な化合物について検出下限、測定方法をまとめて示した。

Z the Transfer of the Control of the				
物質名	検出下限	測定法	備考	
炭化水素(C2)	6 pptv	GC-FID	500 cc 濃縮	
炭化水素(C5, イソプレン)	2 pptv	GC-FID	500 cc 濃縮	
炭化水素(C10, テルペン)	1 pptv	GC-FID	500 cc 濃縮	
ハロカーボン	2 pptv	GC-MS	500 cc 濃縮	
DMS	2 pptv	GC-MS	500 cc 濃縮	
アセトアルデヒド	60 pptv	PTR-MS	10 分積算	
メタノール	100 pptv	PTR-MS	10 分積算	
アセトン	50 pptv	PTR-MS	10 分積算	
ベンゼン	20 pptv	PTR-MS	10 分積算	

表 4.1.1 代表的な物質についての検出下限と測定方法

4.1.2. 都市大気中の VOC 測定

都市大気中にはさまざまなオゾン前駆体物質が排出され、それらが高濃度に存在するだけでなく、時間的・空間的に大きく濃度が変動する。大都市圏は汚染物質の排出の著しい中心地域と汚染物質の拡散および化学的変質過程が進行している郊外地域に大別される。東京都立大学は都心から約30km離れた場所にあり代表的な大都市の郊外地域として位置づけられる。そこで郊外地域の大気汚染物質濃度の変動を調べるため東京都立

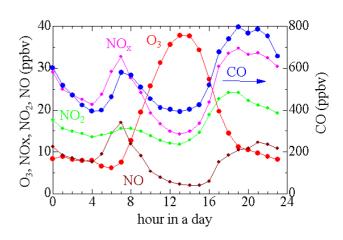


図 4.1.5 東京都立大学で観測された 11 月の 各汚染物質の平均濃度の日変化

大学工学部棟において連続観測を行った。得られた 11 月の平均日変化を図 4.1.5 に示す。主に自動車から排出される NOx や CO は朝方に交通量の増加とともにピークをもつ。日中は地表面の大気が上方の大気とよく混合するために低濃度となるが、夜間は地表面近くに蓄積し高濃度となる。一方 O_3 は夜間 O_3 +NO の反応や地表面への沈着で壊されるため低濃度となり、日中は上空の高濃度 O_3 と混合するため地表近くの濃度も高くなる。さらに日中の太陽紫外線による光化学的生成も起こり境界層内にビルドアップしていくので午後 $2\sim3$ 時に極大を持つことになる。人為起源の VOC については CO とおおむね良く相関しており、同様な日変動パターンとなる。しかし、反応性の高いアルケンなどの VOC は特に夏季などにおいて相関を持たない場合もある。

陽子移動反応型質量分析装置を用い東京都立大学周辺大気の長期観測を行った。都立大キャンパスは植生が豊なところであり人為起源 VOC の影響を受けるだけでなく、植物起源 VOC の寄与も大きい場所である。例として図 4.1.6 に夏季および冬季での平均日変動をいくつかの物質について示す。HCHO、アセトアルデヒドは自動車排気ガスなどから直接排出されるものもあるが、光化学反応で 2 次的に生成するものもある。日射の強い夏には日中に高濃度になる日変化が顕著に見られるが、冬年にはわずかしかみられない。冬季に観測さ

れる HCHO の変動はベンゼンのそれと類似している。冬季に観測される HCHO は大部分が自動車の排気ガスからのものであると考えられる。イソプレンは夏季の日中に大きなピークがみられるが、冬季には見られなくなっている。イソプレンは光合成の過程で植物から大量に放出されることからここで観測された夏季の日中ピークは植物起源によるものであるといえる。発がん性などの影響があるベンゼンは排気ガスなどから放出されるが、夏季・冬季で大きな差はみられない。日没後にやや高めになる傾向がみられるが、日没後に地表大気が安定して汚染大気がたまりやすいのと、都心部の影響が都立大では夕方に出るからと推測される。

反応性化合物の大気濃度を制御しているのは発生源の強さと大気中での反応性及び輸送過程である。ここでは PTR-MS によりいくつかの芳香族化合物について連続観測を行い、光化学反応の直接証拠を得た結果を示す。図 4.1.7 に C9 ベンゼンとトルエン及び C8 ベンゼンの

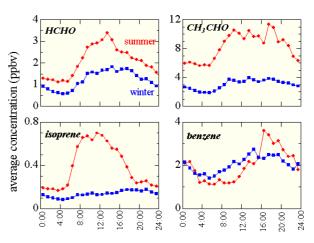
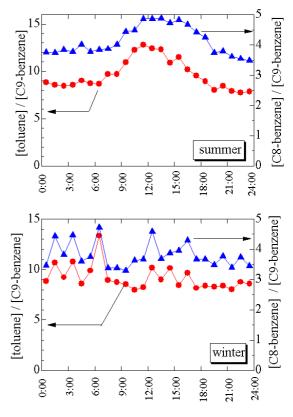



図 4.1.6 都立大学周辺の大気中に観測された VOC の日変動パターン(赤:夏季、青:冬季).

図4.1.7 C9 ベンゼンに対するトルエン及び C8 ベンゼンの比(上段:夏季、下段:冬季).

比の値の日変化を示す。比をとることで反応性を抽出することが出来る。C8 ベンゼン,C9 ベンゼンとは炭素数の合計が8または9個の芳香族炭化水素のことでありOH ラジカルによる反応性はトルエン<C8 ベンゼン<C9 ベンゼンの順番である。図の上段は夏季に得られたものであり、下段は冬季のものである。比は(反応性が低い芳香族)/(反応性が高い芳香族)としているため、もしOH ラジカルとの反応でこれらの物質が減少をしているとこれら比は大きくなる。夏季の結果は正午に極大を示す日変化をしている。これはOH ラジカルによりその場で反応により大気から除去されていることを明確に示している。一方太陽紫外線強度の低い冬季ではOH ラジカルにる消失は殆ど起こっていないことが示された。PTR-MS はこのような連続測定に適しており、光化学反応を新たな切り口で解析できるようになった。また、時間分解能の高いデータが得られるため、実大気中で日射の変化やスパイク的に反応性物質が放出された際の変化を追跡するのに有力な測定手段である。

4.1.3. バックグランド大気と長距離輸送

東アジア地域は人口が密集しており、人為起源の大気汚染物質の大きな発生源となっている。都市において高濃度の汚染物質が問題になるだけでなく、大気汚染物質が長距離輸送され、東アジア全体としてバックグラウンドでの汚染レベルが押し上げられている。都市の影響が少ない清浄な大気中でラジカル観測を行うにあたり基本的な大気化学データが必要になるだけでなく、急速に発展する東アジア地域のバックグラウンド大気がどのような濃度トレンドをとっているのか知らねばならない。局所的な都市の影響を受けにくく、地域的に代表性のある大気を測定できると考えられる地点で一酸化炭素やオゾンの連続観測を行い、汚染物質の輸送の状況を明らかにするよう長期連続観測を行った。観測を行っ

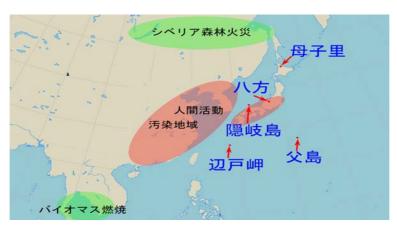


図 4.1.8 長期連続観測を展開した地点

た地点は北海道の母子里、長野県の八方尾根、隠岐、沖縄の辺戸岬であり、図 4.1.8 にこれらの位置を示す。それぞれの地点の特徴は以下のとおりである。母子里は緯度が高く、中国や韓国からの放出の影響を受けにくいが、シベリア森林火災の影響をうけることもある。八方は高度が高い地点なので、発生地点で上昇し高い高度で汚染大気が輸送される汚染大気を捕らえることができる。隠岐は韓国からの影響を強く受ける。辺戸岬は夏季には海洋性の清浄な大気が観測されるが、冬は西からの季節風が卓越し、中国沿岸部からの汚染大気の輸送の影響を強く受ける。東アジアでは一般的に CO 及び O3 の季節変化は冬から春に高濃度、夏に低濃度になる濃度変化を示す。定性的な説明として、OH ラジカルの少ない

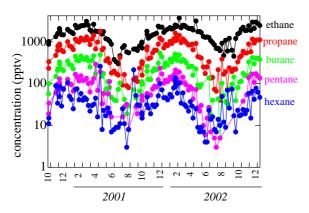


図 **4.1.9** 母子里で観測された炭化 水素の季節変化

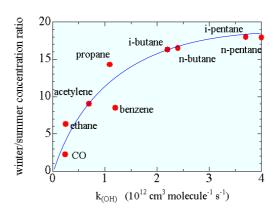


図 4.1.10 炭化水素の冬と夏の比と OH ラジカルとの反応速度定数の関係

冬には除去過程の進行が遅く高濃度となり、OH ラジカルの多い夏には除去過程が促進され濃度 が減少する。さらに日本では冬季の大陸性気団と 夏季の海洋性気団の入れかわりにより濃度も影 響を受けている。図 4.1.9 に母子里で行ったキャ ニスターサンプリングによる VOC の測定の季節 変化を示す。いずれも冬に高濃度で、夏に低濃度 となる季節変となっており、COとほぼ同様な変 化となっている。また、アルカンの炭素数が増加 するほど濃度が減少しているが、これは炭素数の 増加とともに OH ラジカルとの反応速度が大き くなることを反映している。それぞれの物質につ いて図4.1.10に冬季/夏季濃度の比をOHラジカ ルとの反応速度定数に対してプロットしてある。 OH との反応性が増すにつれてより大きな季節 変化がることを示している。これらの測定結果か らアルカン季節変化は OH の季節変化によりほ ぼ説明が可能であり、この測定地点がローカルな

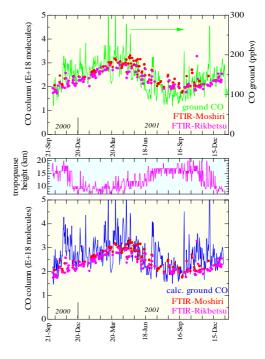
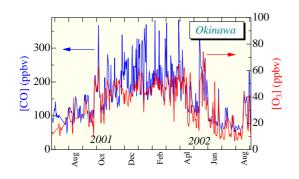



図 **4.1.11** 母子里における CO の地上 観測と FTIR 観測の比較

VOC 発生源の影響を受けていないことを示している。母子里の観測所では名古屋大学により太陽光を光源とした FTIR による微量大気成分のカラム量測定が継続して行われている。地上観測の CO と FTIR の測定結果の比較を行った。図 4.1.11 の上図は比較を行った結果である。地上観測はその場所での濃度であり、カラムカラム量はほぼ対流圏中での全量に相当するため、直接比較はできない。単純に濃度変動のパターンを比べると夏季に FTIR の値が地上観測ほど低下しないという差が見られる。そこで、対流圏内で CO が一様に混合していると過程して、地上観測濃度からカラム量を求めて比較を行った。圏界面は季節によって変化するため、札幌の圏界面データも用いた。地上測定値をカラム値に変換して比較した下図を見ると、絶対値がほぼ同様な値になっており、対流圏内で CO などはある程度均一に混合しているという仮定が正しいことが分かった。また、夏季で両者の差が少な

図 4.1.12 沖縄での CO、O₃の季節変化 (青: CO、赤: オゾン)

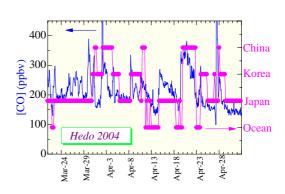


図 **4.1.13** 春季沖縄の CO 濃度と空 気塊起源の関係

くなり、より良い一致を示すようになった。地上測定の方がスパイク状に高濃度となるところが多数見られるが、これらは高度の低い大気層だけ汚染大気物質の影響を受けている期間であると考えられる。このようなカラム量と地上観測を同地点で行っている観測点は他になく、両者を比較できる貴重なデータセッ

トを得ることができた。

沖縄は低緯度に位置する離島であるが、予想 に反して大気が清浄な地点ではない。図 4.1.12 に CO および O3 の季節変化を示す。 CO につい ては明確な季節変化が見られる。冬季・春季に は中国からの影響が大きく、しばしば 250 ppbv を超える高濃度の輸送イベントが数多く見ら れる。一方夏季には海洋性の清浄な大気の影響 を受けるため、かなり低濃度となっている。図 4.1.13 に春季の CO 濃度変化とバックワードト ラジェクトリーによる空気塊の起源を示す。高 濃度期間に中国方面や韓国方面から大気が輸 送されており、海洋性の大気が卓越している期 間に低濃度となる様子がよく対応づけられて いる。汚染大気の発生源による分類だけでなく、 汚染大気発生源である陸地を離れてから観測 地点に到達するまでの時間(輸送時間)につい ても検討を行った。バックワードトラジェクト リー計算を地図と照らし合わせることにより 輸送時間を求めることができる。

小笠原は沖縄とほぼ同緯度に位置するが、大陸からさらに離れているため、両地点を比較して汚染大気の長距離輸送を観測することは興味深い。図 4.1.14 に冬季の小笠原で測定した炭化水素であるエタンと輸送時間の関係を示す。輸送時間が短いときにエタンが高濃度となり、

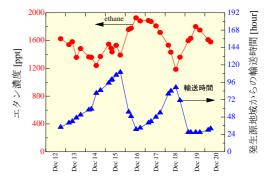
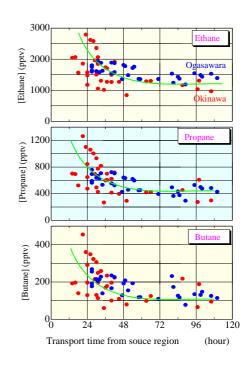



図 4.1.14 小笠原でのエタンと輸送時間の関係

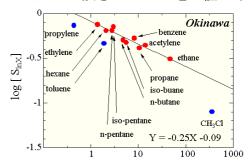


図 4.1.15 炭化水素濃度と輸送時間の関係(青:小笠原、<mark>赤</mark>:沖縄)

輸送時間が長くなると低濃度になる傾向がはっきり見られる。図 4.1.15 に小笠原と沖縄で測定した炭化水素濃度を輸送時間に対してプロットした結果を示す。逆相関がみられ、空気塊が輸送されている間にバックグランド大気との混合により濃度が減少してゆく様子が見られている。両地点では発生源からの距離が違うにもかかわらず、一致する傾向になっている。また、これらの炭化水素は大気中での寿命が異なるのだが、いずれも 48 時間程度まで急激な減少傾向にあるという同様な変化となっており、OH ラジカルとの反応でこのような減少がみられるのではなく、バックグラウンド大気との混合による影響が大きいといえる。大気汚染物質の濃度変動は発生源に近いとより大きくなり、発生源から遠いと変動が小さくなるという傾向がある。図 4.1.16 にそれぞれの物質について相対変動の対数値を大気中寿命に対してプロットした。発生源の都市などではこの傾きがゼロに近い値にな

り、発生源から遠くなればなるほど-1に近い傾き に近づく。沖縄と小笠原の両者とも青で示したいく つかの物質を除けば良く直線にのっており、それら の傾きは沖縄よりも小笠原のほうがより-1に近く なっている。このことからも中国などからの大気汚 染物質が長距離輸送されて、沖縄を通過し小笠原に 到達するという傾向を見ることができる。

低緯度地域の離島での測定から、夏季は海洋性で清浄な大気となるが、冬季・春季には中国大陸などの発生源からの汚染大気輸送の影響をうけ、スパイク状に高濃度となっているところが数多く見られる。今後の中国の発展に伴う汚染物質の長距離輸送の変化をモニターするのに適している測定地点であるといえる。ラジカル観測を行う地点としては、季節により大きく特徴がかわることに注意する必要がある。また、一年を通じて他の地点よりも光化学反応が起こりやすいために、アルコールやアルデヒドなどのOVOCが高濃度であり、ラジカル反応も特徴的なものとなっていることが予想される地点である。

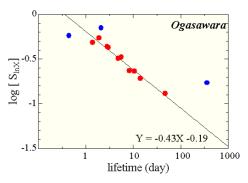
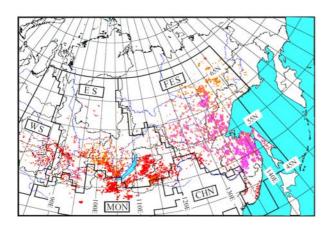
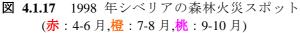




図 4.1.16 炭化水素の測定値の揺らぎ (相対変動の対数値)と大気寿 命の関係

4.1.4. シベリア森林火災の影響

化石燃料燃焼起源の汚染物質についてはある程度の知見が得られているもののバイオマス燃焼起源などによる排出量については未だに不確定な要素が大きい。1997年に起きたインドネシア・カリマンタン島での大規模な森林火災による大量の汚染物質の大気への放出が、全球規模で対流圏オゾンの増加に寄与していると考えられている。これらの事実からもオゾンの物質収支を理解する上では、森林火災のバイオマス燃焼による NOx、CO や炭化水素等の排出量を精密に見積もる必要がある。アジア大陸北部のシベリアにおいても大規模な森林火災が春期から夏期にかけて発生することが明らかとなってきたが、シベリアの森林火災の大気に対する影響についてはほとんど研究されていなかった。本研究ではアメリカ海洋大気局(NOAA)の提供する人工衛星データの高分解能赤外画像写真(AVHRR)を解析することにより、シベリア全土における1998年に起こった森林火災の規模を1°x1°単位のグリッドデータ化し全体の描像を把握した。

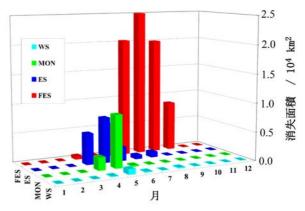


図 4.1.18 各地域での消失面積の月変化

図 4.1.17 に 1998 年に起こった森林火災のホットスポットを示す。ここでは、行政区にし たがって、西シベリア(WS)、東シベリア(ES)、極東シベリア(FES)およびモンゴル(MON) の4つにエリアを区分けした。バイカル湖周辺の東シベリアおよびモンゴル北部で火災が 著しいことが分かる。また、極東シベリアの東経 135-140°北緯 50-55°の地域も火災が大き い。中国北部においても火災が発生しているが、全ての領域を網羅していないので今回の 解析には中国のデータは加えない。図 4.1.18 にそれぞれのエリアにおける月毎の火災の面 積を示す。全体として大きな月変化を示し5月ピークと8月ピークのバイモダル構造とな っている。極東シベリア以外の地域では5月ピークを示す事がわかった。その後の火災場 所が東方へ移動して、夏季に極東シベリアがピークを迎えている。シベリアの降雨はあま り多くはないが 6-7 月がピーク(約 100 mm/月)でありアジアモンスーンの影響がある。森林 火災の地域が西から東へ移動していくのもこのモンスーンの影響によると考えられる。消 失面積、その場の植生データから炭素密度を調べ排出係数をかけてオゾン前駆物質の排出 量を見積もった。本研究の見積もりとその他の地域のデータを表 4.1.2 にまとめた。火災の 規模ではインドネシアやカナダよりも大きい。中国北部の寄与を加えると更に2割程度増 加する。NOxの発生はインドネシアに比べて1/3程度であるがCOについてはむしろ多い。 メタン以外は東アジアでの化石燃料起源発生量に匹敵していることが明らかとなった。こ のことはシベリア森林火災による大気質への負荷は非常に大きいことを示している。

シベリア森林火災 インドネシア火災 カナダ森林火災 化石燃料燃焼 (1998年) (1997年)* (1995年)** 消失面積 / km² 10.9×10^4 4.56×10^{3} 4.9×10^{3} 火災期間 4-10 月 8-12 月 6-7 月 1.8 5.9 2.3 NOx / Tg CH₄ / Tg 1.6 2.5 9.1 CO / Tg 50 33 12 42

表 4.1.2 オゾン前駆物質の推定排出量

^{*} J.S. Levine (1999).

^{**} G. Wotawa and M. Trainer (2000).

^{**} EDGAR inventory (20-50 °N, 110-150 °E).

北海道の利尻島において CO およびオゾンの連続観測からシベリアの森林火災について検出したことは前項で述べたが、八方尾根で観測された CO についてもシベリアの森林火災の影響が観測された。八方尾根に到達する空気塊のバックワードトラジェクトリーと衛星データの森林火災地点の図をもちいて、西~北方面から飛来した空気塊が森林火災地域を通過したか、しないかでカテゴリー分けし、それぞれの場合での CO およびオゾンの平均

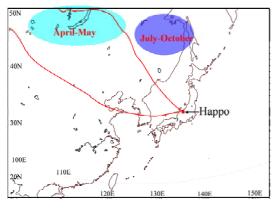


図 4.1.19 八方尾根に飛来する大陸からの 空気塊の流蹟線の例

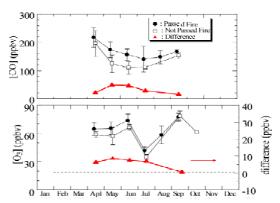
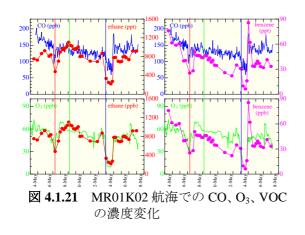


図 4.1.20 火災地域を横切る場合とそうで ない場合の八方で観測される CO とオゾンの大気濃度およびその差


濃度を比較した。図 4.1.19 に典型的な流蹟線の結果を示す。春季はシベリア東部から飛来する空気が卓越しており火災地域からは数日内で八方まで到達することが明らかとなった。図 4.1.20 に CO およびオゾンについて各月ごとの平均濃度と、両者の差を示す。森林火災地域を通過した場合は通過しなかった場合に比べて明らかに高くなっており、その差は 5-6月に 50 ppbv 程度にもなっている。同様な比較をオゾンにつてい行うと、5 ppbv 程度の差が見られる。このように八方尾根での観測からシベリアの森林火災による大気汚染物質の日本への影響があることが明らかとなった。シベリアに加えてアラスカやカナダの森林地帯でも同様の森林火災が頻発しており北半球高緯度帯の大気質に大きな摂動を加えていることが判った。これら汚染物質の一部は北極域に運ばれ極域のヘイズの要因になっていると考えられる。

4.1.5. 海洋大気の酸化能

海洋は地球の7割を占めておりそこでの大気化学反応を知ることは大変重要である。それにもかかわらず、海洋での大気観測はごく限られており、ラジカル計測に関してはほとんど観測例がない。洋上に浮かぶ離島での観測も海洋大気測定として有効ではあるが、多量の炭化水素などを放出する植物の影響などを避けて純粋に海洋大気を測定できる船舶での測定は大きな魅力である。本プロジェクト中には船舶にラジカル計測装置を載せて洋上測定するには至らなかったが、微量大気成分の測定を行い、ラジカルケミストリーに影響を与える物質について多くの知見を得た。

東アジア地域での汚染物質の長距離輸送はより広範囲の太平洋上まで輸送される。この様子を明らかにするために、太平洋上で観測を行える離島はごく限られている。船舶での観測は測定データを取得することが困難な太平洋上での情報を提供してくれるという大きなメリットがある。また、海洋から大気中へ放出されるさまざまな物質は、地球の大部分

を占める海洋上での大気化学反応に大きく関係し、地球の気候変動にまで影響を及ぼすと考えられている。このように船舶を用いて人為起源汚染物質の長距離輸送と海洋起源物質と大気の相互作用を明らかにするために、船舶に測器を持ち込んでの観測と大気サンプリングを行った。海洋科学研究センターの「みらい」、「白鳳丸」、Scripps 研究所の"Mellivile"

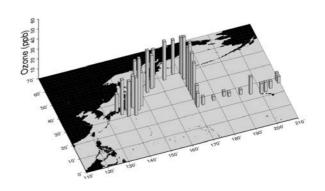


図 4.1.22 IOC2002 航海での O₃ 濃度分布

などの観測船で主に西太平洋での観測を行った。

は東南アジア方面からの汚染空気が輸送した ためのものであることがわかっている。特に東 南アジアは乾季のバイオマス燃焼が激しいた め、その影響が太平洋中央部に及ぼす影響も重 要である。

海洋上の大気の組成や反応性は、汚染大気の輸送だけでなく、海洋から大気に放出される物質によっても影響を受ける。図 4.1.23 に IOC2002 航海で観測された海洋生物起源物質の濃度変化を示す。これらは海洋・大気の交換で海洋大気中に放出される。反応性の高い Isoprene や CH₃Br などのハロカーボンは特定の生物から生産されると考えられるので、時々高

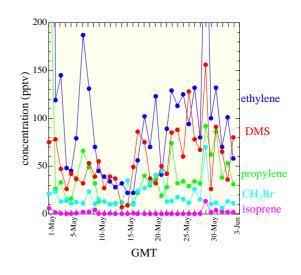


図 4.1.23 IOC2002 航海での海洋起源物質

濃度になる地点が見られている。ethylene や propylene は生物の死骸が光で分解してできると考えられるため、航海後半にあたる日射が強い低緯度地域で高濃度になる傾向が見られている。これら不飽和炭化水素は大気中での反応性が大きい。低緯度地域での海洋大気中での OH ラジカルとの反応性を検討してみると、CO、メタンが多くを占める中で、不飽和炭化水素は 10%程度の寄与があることが分かり、場合によっては海洋上での大気化学反応に影響を与えることが分かった。

冬季に太平洋北西部を観測したMR03K01 航海では VOC に加えて OVOC の測定も行った。測定した物質の OH ラジカルとの反応性の寄与を図4.1.24 に示す。CO,CH4 が大きな寄与があるが、それ以外にOVOCが23%もの割合を占めており、なかでもアセトアルデヒドの寄与が大きいことが分かった。人為起源の炭化水素は海洋上を輸送される間に比較的速く減少するのだが、OVOCはこれらが酸化する過程で生成することもあり、海洋上でもそれほど低濃度にはならないことが分かった。これまであまり測定されてこなかったOVOC が海洋大気中では大きな影響を及ぼすということは大きな発見であり、海洋大気中でラジカル計測をする際には重要な物質となる。

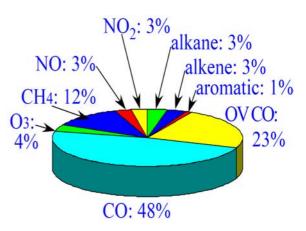


図 4.1.24 海洋における OH ラジカルによる酸化能の内訳

4.2 窒素酸化物の化学的変質過程解明

窒素酸化物 NOx (NO, NO_2) は、気候変動において重要な対流圏 O_3 の前駆体であるうえ、酸化反応により HNO_3 となって大気を酸性化する(図 4.2.1)。したがって、地球大気の変動メカニズムを解明するためには、大気中 NOx および関連物質の諸過程(放出・反応・輸送・消失)を正確に把握することが不可欠である。化石燃料の燃焼により大気に排出される窒素酸化物は大部分が一酸化窒素(NO)という化学形態である。NO は 230 nm よりも短波長域に光吸収があるので太陽光による光化学的な活性はない。しかしながら強い還元力を有しオゾンや過酸化ラジカルを還元し自らは二酸化窒素 (NO_2) となり大気化学反応を駆動してい

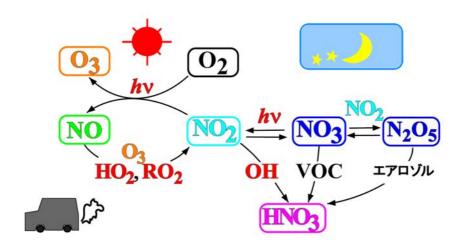


図 4.2.1 窒素酸化物の大気中での化学的変質過程

く。夜間は NO_2 とオゾンが反応し NO_3 ラジカルが生成し更なる大気の酸性化に寄与している。観測を通して化学的変質過程を調べることが、実大気の状況を知るうえで最も有効なアプローチである。NOx および関連物質については、測定手法の確立および実大気観測データの蓄積が急務となっている。レーザー誘起蛍光法(LIF 法)による大気中窒素酸化物の高感度測定装置を新たに開発し、実大気観測の結果から NOx 反応過程について検討した。

4.2.1. LIF 法による NO₂ 測定

大気中 NOx の高速・高感度測定を実現するために、レーザー誘起蛍光法(LIF 法)による NO₂ 測定装置を開発した(図 4.2.2(a))。高出力パルスレーザー(532 nm, Nd:YVO₄ 第二高調波、繰返し周波数 10 kHz、出力 7 W)を照射して試料大気中 NO₂ 分子を励起し、発せられる 蛍光を光電子増倍管(photomultiplier tube, PMT)によって検出した。励起セル内のバッフル板 と PMT 前面の光学フィルターを最適化してレーザー散乱光成分を抑制し、さらに PMT 冷却により暗電流を低減させることにより、検出の信号対雑音比(SN) 比)の向上を図った。

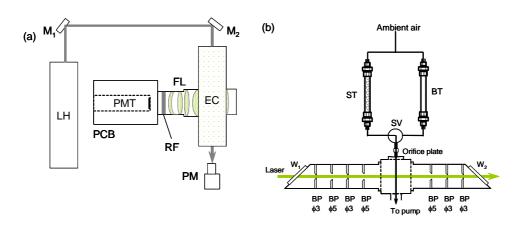


図 4.2.2 LIF 法 NO₂ 測定装置の概略

- (a) 励起光学系。LH: 励起レーザー発振装置(10 kHz, 532 nm)、 M_1 , M_2 : 光路調整ミラー、EC: 励起セル、PM: レーザー強度計、FL: 集光レンズ系、RF: レーザー散乱遮光用の光学フィルタ(赤色)、PMT: 光電子増倍管、PCB: PMT 収納箱(冷却装置付).
- (b) 励起セル内の光路、および試料導入系。ST: ゼロ点決定用スクラバー管、BT: 大気測定用ブランク管、SV: 三方電磁弁、 W_1,W_2 : セル窓、BP: 遮光用バッフル板.

試料導入の際にはオリフィス板(孔径 0.2 mm)と油回転ポンプを用いて励起セル内を低圧(2 torr)に保持し、消光を抑制して蛍光発光の効率を高めた。さらに、ゲートタイミングにより検出時間を制御したうえで光子計数法を実施し、高精度な蛍光検出を行った。消光を考慮してセル内圧力とゲートタイミングの組み合わせを最適化し、測定性能の向上を図った。LIF 法 NO_2 測定に対する妨害として、大気中に存在する粒子状物質(エアロゾル)によるレーザー光の散乱が考えられる。そこで本装置では、ヒドロキシアパタイト被覆二酸化チタン粉末を内壁に塗布したスクラバー管に試料大気を流通させて NO_2 を選択的に除去し、ゼロ点を決定した(図 4.2.2 (b))。ブランク管またはスクラバー管に試料を流通させる 2 つの測定モードを交互に切替えて、それぞれのモードについて信号を測定した。 2 種類の管のどちらを試料が通過しても、エアロゾルの除去率は変わらないため、2 つのモードの信号の差をとることによって、エアロゾルによる妨害を除去した正味の NO_2 信号を得ることができた。装置の改良と測定条件の最適化の結果、検出限界は 1.8 pptv に到達し(60 秒積算、SN

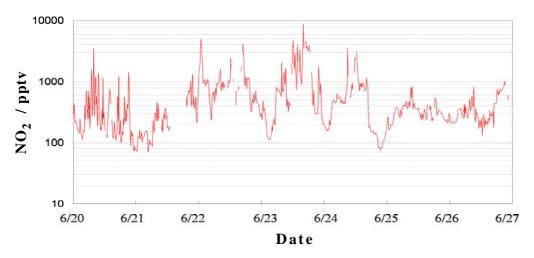


図 4.2.3 LIF 法による清浄海洋大気中 NO2 濃度測定結果(利尻島 2000 年)

= 1)、世界最高レベルの NO_2 測定性能を実現した。これにより、pptv レベルの清浄大気における高精度 NO_2 測定が可能となった。LIF 法 NO_2 測定装置を用いた、北海道利尻島での大気観測の結果を図 4.2.3 に示す。清浄海洋大気中のpptv レベルの NO_2 連続測定に成功し、測定装置の実用性を確認することができた。感度校正のために数回観測を中断したものの連続でほぼ 1 週間観測が続行できた。

4.2.2. 化学増幅-LIF 法による過酸化ラジカル全量(ΣRO₂)測定

過酸化ラジカル HO_2 および RO_2 ($\Sigma RO_2 = HO_2 + RO_2$ とする)は、NO と反応して NO_2 を生成し、 NO_2 光解離とともに O_3 を生成する。したがって、対流圏 O_3 の収支を議論するためには、実大気中の ΣRO_2 観測が不可欠である。従来の ΣRO_2 測定では、大気試料に NO と CO を添加し、連鎖反応により ΣRO_2 を 300 倍程度の NO_2 に変換・増幅し(化学増幅法、PERCA)、生成する NO_2 をルミノール化学発光法によって定量していた。しかし、ルミノール法は測定の安定性・時間分解能に問題があるうえ、大気中に共存する NO_2 以外の物質による妨害

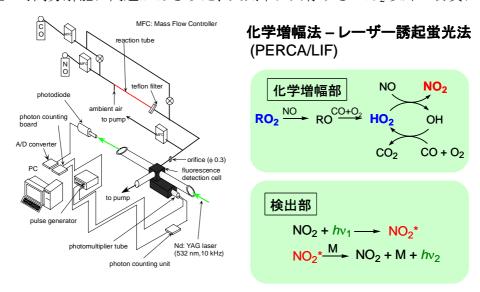


図 4.2.4 PERCA-LIF 法による過酸化ラジカル測定の原理と装置

の影響が知られている。そこで本研究では、 NO₂検出に LIF 法を採用した PERCA-LIF 法に よって、高感度・高精度・高時間分解能を有す るΣRO₂ 測定装置を新たに開発した(図 4.2.4)。 さらに、2 台の NO2 測定セルを用いることに よって、NO₂とΣRO₂の同時測定を可能とした (図 4.2.5)。この装置では、1 台の励起レーザー によって NO_2 と ΣRO_2 の 2 種類を同時観測でき るため、大気光化学反応の観測研究において有 用である。 NO_2 - ΣRO_2 同時測定用に小型化した セルを用いた結果、 ΣRO_2 の検出限界は 2 pptv (60 秒積算、S/N=1)となり、大気測定が十分に 可能な性能を実現した。2004年8月の東京都 立大学における都市大気観測の結果、ΣRO₂は O_3 光解離係数 $J(O^1D)$ の 1 次と良い相関を示し た(図 4.2.6(a)(b))。NOx レベルの高い都市の汚 染大気では、ラジカル消失速度が NO2+OHに よって支配されるので、ラジカル濃度は

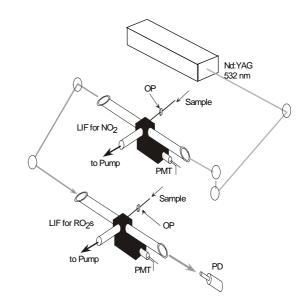


図 4.2.5 過酸化ラジカル・NO₂ 同時測定装置 の概略. OP: 流量・圧力調整用オリフィス板、PD: レーザー強度変動モニタ 用フォトダイオード.

$$[RO_2]_{\text{polluted}} = \left(\frac{2\phi[O_3][H_2O]}{k_x[X]}\right) J(O^1D)$$
 (R 4.2.1)

のように $J(O^1D)$ の 1 次に比例することが知られている。ただし、 ϕ は O_3 の光解離によって生成した $O(^1D)$ が水蒸気と反応する量子収率、[X]は ラジカルと反応して消失させる化学種 X の濃度(ラジカル同士の反応を除く)、 k_x はその反応速度定数である。一方、清浄大気中では一般に、

$$[RO_2]_{clean} = \left(\frac{2\phi[O_3][H_2O]}{k_{RO2}}\right)^{1/2} J(O^1D)^{1/2}$$
 (R4.2.2)

にしたがって $J(O^1D)$ の平方根に比例する(k_{RO2} はラジカル同士による消失反応の速度定数)。北海道利尻島での清浄大気観測(2003 年 9 月、図 4.2.6(c))では、ラジカル濃度 ΣRO_2 は $J(O^1D)$ の平方根と相関しており、式 4.2.2 で説明される。以上のように、理論式と実測値が良く一致したことから、本装置による ΣRO_2 測定値は妥当であり、大気観測への実用性が十分可能であることが確認された。

本装置を用いた NOx, O_3 , ΣRO_2 時観測は、日中 O_3 生成速度の議論に有用である。一方で、 ラジカル生成反応を駆動する日射のない夜間には、一般には ΣRO_2 濃度は低いと予想される。 しかし今回の都市大気観測では、NO 濃度が 100 pptv 以下と低い条件下において、数十 pptv にも及ぶ高濃度の ΣRO_2 が観測された(図 4.2.7(a), (b))。夜間観測を行った両日とも過酸化ラジカル濃度はオゾン濃度に敏感に応答しており、NO による滴呈を受けてオゾン濃度がゼロになるとラジカル濃度も検出下限以下となる。このことから夜間の過酸化ラジカルの生成にオゾンが関与していることは明確となった。夜間ラジカル生成反応としては、(1) O_3 +

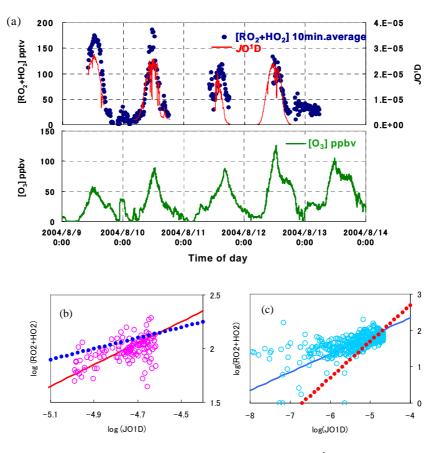


図 4.2.6 過酸化ラジカル濃度実測値と O_3 光解離係数 $J(O^1D)$ の関係

- (a) 都市大気における実測値の時系列データ(東京都立大学 2004 年 8 月)
- (b) 都市大気での $\log J(O^1D)$ ラジカル濃度の相関図。 ラジカル濃度が $J(O^1D)$ に対して 1次(実線)に依存した(点線は平方根に依存する場合を表す)
- (c) 清浄海洋大気(利尻島 2000 年 9 月)での相関図。ラジカル濃度が $J(O^1D)$ に対して、実線は平方根、点線は 1 次に依存する場合を表す.

VOC, (2) NO₃ + VOC の 2 つが知られている。NO₃ ラジカルを経由する場合でも NO₃ ラジカルの原料としてオゾンは重要となる。今回の観測結果に定常状態を適用し、O₃ および NO₃ によるラジカル生成量を推定した。NO₃ 濃度は、前駆体(NOx, O₃)の実測値から定常状態法によって推定した。はじめに、O₃ + VOC によって生成するラジカル濃度を次式により求めた(k_{alkene} はアルケンと O₃ からラジカル

$$\left[\text{RO}_{2}\right]_{\text{SS(O3+VOC)}} = \frac{\left[\text{O}_{3}\right]\sum k_{\text{alkene}}\left[\text{alkene}\right]}{k_{\text{NO+RO2}}\left[\text{NO}\right]}$$
(R4.2.3)

を生成する反応の速度定数、 k_{NO+RO2} は NO とラジカルの反応速度定数)。この計算値を実測 Σ RO₂ 濃度と比較したところ、実測値が計算値よりも有意に大きかった(図 4.2.7(c))。夜間 RO₂ ラジカル生成は O₃ + VOC だけでは説明できず、NO₃ + VOC の寄与が重要であることが確認された。次に、定常状態での NO₃ 濃度 [NO₃] $_{ss}$ を実測 NOx, O₃ から推定したうえで、NO₃ + VOC によるラジカル生成量を評価した。NO₃ + VOC による 1 分子のラジカル生成を仮定すると、生成量は次式で表せる。

$$\left[\text{RO}_{2}\right]_{\text{SS(NO3+VOC)}} = \frac{\left[\text{NO}_{3}\right]_{\text{SS}} \sum k'_{\text{alkene}} \left[\text{alkene}\right]}{k_{\text{NO+RO2}}\left[\text{NO}\right]} \qquad (\text{R4.2.4})$$

ただし、 k'_{alkene} は アルケンと NO_3 からラジカルを生成する反応速度定数とする。この生成量と、ラジカル不足量(実測濃度と O_3 + VOC による生成量の差)の関係をプロットしたところ、図 4.2.7(d)に示すように良い相関を得られた。今回の観測では、 NO_3 + VOC の反応が、オゾン-アルケン反応に加えて夜間ラジカル生成に寄与していることがわかった。相関直線の傾きが 0.6 となったが、これは NO_3 + VOC の反応におけるラジカル生成収率が 60 %であることを表している。この値は文献値ともよく一致し、妥当である。以上の結果から、夜間に O_3 + VOC と NO_3 + VOC によってラジカルが有意に生成することを、実際の都市大気観測において見出した。 NO_3 の原料となる NO_2 および O_3 濃度が十分高く、 NO_3 消失を支配する NO 濃度が十分低い場合には、夜間でも数十 P0 P1 の P2 が存在しうることが示された。夜間ラジカル反応は、さまざまな化学種の大気寿命を議論するうえで重要である。本研究によって、夜間ラジカル生成に関する重要な知見が得られた。

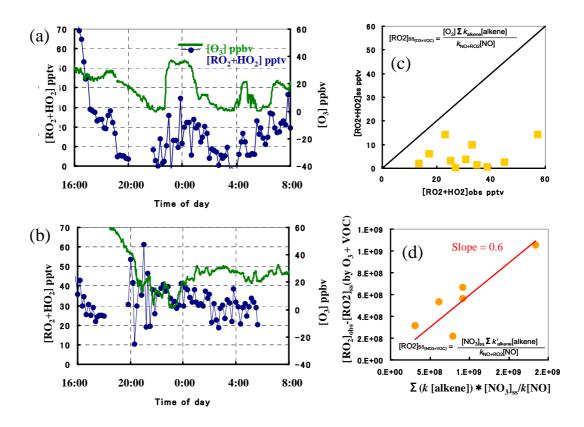


図 4.2.7 夜間都市大気における過酸化ラジカル (東京都立大学、2004 年 8 月)

- (a) 8 月 9-10 日の測定結果
- (b) 8 月 12-13 日の測定結果
- (c) O_3 + VOC によって生成するラジカル濃度の定常状態法による推定値 [RO $_2$] $_{ss(O3+VOC)}$ と、実測ラジカル濃度の関係横軸は、 NO_3 + VOC によって生成するラジカル濃度を、収率 100 % と仮定して定常状態法によって推定した値 [RO $_2$] $_{ss(NO3+VOC)}$. 縦軸は、 O_3 + VOC によって説明できないラジカル濃度不足分を表し、 O_3 + VOC に関する定常状態法からの推定値と実測濃度の差によって求めた.

4.2.3. NOx の光化学定常状態

日中では、大気中に放出された NO は数分の時定数で NO₂と交換しあっている(図 4.2.1)。 したがって、NOx 諸過程を正確に把握するためには、NO $_2$ で換反応を正確に定量することが必要である。特に NOx 発生源である都市大気での反応を知ることは、大気中での NOx 収支を議論するうえで重要である。今回、LIF 法による NO₂ の高速・高感度測定および PERCA $_2$ 測定によって、NO $_2$ 交換反応を正確に議論することが可能となった。NO $_2$ 交換について光化学定常状態が成立するとき、

$$\phi' = \frac{J_{\text{NO2}}[\text{NO}_2]}{(k_{\text{NO+O3}}[\text{O}_3] + k_{\text{NO+RO2}}[\sum \text{RO}_2])}$$
(R4.2.5)

により定義される光化学定常状態係数 ϕ' は 1 となる(ただし、 J_{NO2} は NO_2 光解離係数、 k_{NO+O3} は $NO+O_3$ の反応速度定数)。数分の時定数で光化学定常状態が成立するかどうか調べる目的から 2002 年 8 月に、NOx を中心とする大気微量成分の総合観測を大阪府立大学において実施し、 ϕ' の短時間変動について検討した。NO 濃度および日射量の急激な変動

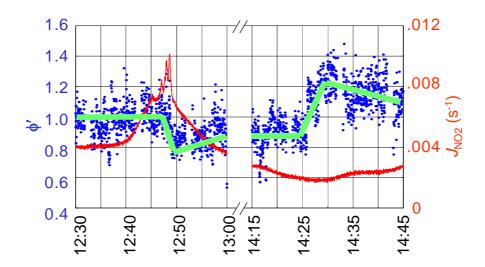


図 4.2.8 都市大気における J_{NO2} (細実線) およびラジカル濃度の短時間変動に対する、NOx 光化学定常状態係数 ϕ (黒丸) の応答 (大阪府立大学、2002年8月).太線は、 ϕ の定性的な変化を表したもの.左は J_{NO2} 、右はラジカル濃度急変時.

による ϕ' の擾乱が確認された(図 4.2.8)。本研究で開発した過酸化ラジカル濃度測定装置による 1 s オーダーでの高速測定によって、 $NO-NO_2$ 交換の短時間変動を初めて確認した。さらに 2004 年に東京都立大学において実施した観測の結果、次のことが見出された。 (1) 冬期は大気境界層高度が低く、地表から発生した汚染物質の寄与が大きい。特に、局所的に発生した NO の影響が大きい場合には、定常状態が不成立となって ϕ' < 1 となる(図 4.2.9(a))。 (2) 夏期は、系統的に ϕ' の値が 1 より大きくなる場合が観測された(図 4.2.9(b))。これは NO の酸化過程が NO_2 の分解過程を優っていることを示している。この事実を説明するには次の可能性が挙げられる。1)化学増幅法では検出されない過酸化ラジカルが大気

中に存在する。2) NO2の局所的な発生源が存在する。3) NO を酸化する未知成分の酸化剤 (XO)が大気中に存在する。これら3つの可能性について検討した。一般的に海洋大気では、 硫化ジメチル(DMS)の光酸化で生成する過酸化ラジカルは化学増幅法により検出されない と考えられており実際同様ながの過小評価が清浄な海洋大気中では報告されている。しか し、都市の大気ではその可能性は低い。また局所的な NO_2 の発生源としてPANなどの熱分 解による大気中での NO₂ の発生についても検討した。PAN は熱分解により過酸化アセチル ラジカルと NO2 を大気中に放出する。そこで PAN と過酸化アセチルラジカルを定常状態と してがの値に与える影響を摂動として評価を行ったところ、がの値をある程度改善させられ るが全てを説明できるわけではなかった。NOx に暴露された建造物の表面や地表面に蓄積 した窒素酸化物が太陽光の照射で大気中に NOx を放出させる過程なども有力であるが実 験的な確証を得るに至っていない。現時点では詳細は不明であるが、オゾンおよびΣRO2 以外の酸化剤の寄与が有力であると考えている。ハロゲン化合物の可能性が指摘されてい る。不一致をすべて XO であるとした場合 NO 酸化に対する XO による寄与は、日射強度 に依存した明確な日変化を示した。この傾向は春季に観測された大阪府立大学でも得られ た。このことから、XOは光化学的に生成した二次生成物質であると推測される。XOの寄 与が夏期に顕著に見られた事実も、光化学反応が XO と関連していたことを示している。

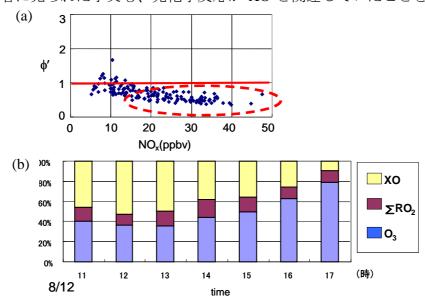


図 4.2.9 都市大気における NOx 光化学定常状態(八王子、2004年8月) (a) 冬期の光化学定常状態係数 ϕ の NOx 濃度依存。実線は ϕ = 1.

(b) NO 酸化反応に対する寄与の内訳。NO₂ 光解離を 100 % とし、O₃ と 過酸化ラジカルの寄与を除いたものを XO の寄与とする.

このような未知なる NO の酸化過程を考慮に入れると都市大気中でのオキシダント生成は加速される可能性があり、今後の詳細な検討が待たれるところである。

4.2.4. LIF 法による NO₃ および N₂O₅ の測定

NOx は、日中には NO₂ + OH の反応によって HNO₃ を生成する。HNO₃ が地表面に沈着することにより、NOx は大気中から除去される。一方で夜間には、NOx が O₃ により酸化されて NO₃ および N₂O₅ を生成する。さらに NO₃ は VOC と反応し、N₂O₅ はエアロゾル表面上で H₂O と不均一反応し、HNO₃ となる。図 4.2.10 に、NO₃/N₂O₅ を中心とした夜間 NOx

反応系の概要を示す。NOx 消失過程を正確に解明するためには、日中の反応だけでなく、 夜間 NO_3/N_2O_5 の寄与を考慮しなければならない。また NO_3 は反応性が高いため、さまざまな化学種の大気寿命に影響する。しかしながら、これまでの夜間大気 NO_3/N_2O_5 観測例は 少なく、反応の検証には不十分である。そこで本研究では、実大気観測を目的とした レーザー誘起蛍光法(LIF 法)による NO_3/N_2O_5 測定装置を開発した。

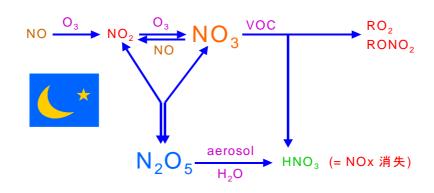


図 4.2.10 NO₃/N₂O₅ を中心とした夜間大気中 NOx 反応系

 NO_3 ラジカルは、電子状態の遷移($^2E' \leftarrow ^2A_2'$)によって可視光を吸収する。特に、0-0 バンドに対応する 661.9 nm と、対称伸縮が 1 量子励起された 0-1 バンドに対応する 623.5 nm に吸収極大を持つ。この波長領域で励起された NO_3 ラジカルは、基底状態に戻る際に高い量子収率で蛍光を発する。したがって、発せられる蛍光を検出することによって、 NO_3 測定が可能となる。励起光源として、単色性に優れた高出力パルスレーザーを用いることで、高感度で選択の高い NO_3 測定が可能である。本研究では、励起レーザーの出力・安定性を

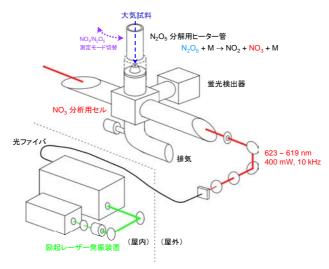


図 4.2.11 LIF 法 NO₃/N₂O₅ 測定装置の概略

考慮して、623.5 nm の吸収極大を励起波長とした。実際には、吸収極大の山ー谷の2波長 (623, 619 nm)間の差分を測定することによって、 NO_3 以外の物質による妨害を除去した。また、ヒーター管を通してから試料大気を NO_3 測定セルに導入することによって、試料中の N_2O_5 を熱分解して NO_3 に変換・検出した。

測定装置の概略を図 4.2.11 に示す。高感度・高選択的な測定のための光源として、高出力な波長可変レーザーが有用である。本研究では、 $Nd:YVO_4$ パルスレーザー第二高調波 (Spectra Physics 製 T80-YHP40-532Q, 波長 532 nm, 繰返し周波数 10~kHz, 出力 6.5~W)によりポンプした波長可変色素レーザー(Lambda Physik 製 SCANMATE)を使用した。色素溶液として、ローダミン 101 ーメタノール溶液(濃度 0.5~g/L)を用いた。 NO_3 の 623~nm 吸収帯は波長幅が広く、適度な波長分解能があれば測定は可能である。エタロン板を使用せずに出力の確保を優先した結果、波長分解能 0.006~nm ($0.15~cm^{-1}$)、レーザー出力 600~mW (623~nm) を得た。

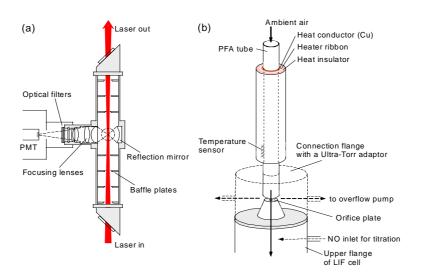


図 4.2.12 (a) NO_3 検出セルと励起レーザーの光路 (b) N_2O_5 熱分解用ヒーター管、および インレット

NO3 および N2O5 の測定では、配管を使用すると壁面に吸着して損失する恐れがある。したがって、大気中の NO3/N2O5 濃度を正確に測定するためには、分析セルを屋外に設置して、その場の試料大気をセルに直接導入する必要がある。本研究では、室内で安定に運転しているレーザー装置から屋外の分析セルに、光ファイバを用いて励起レーザー光を導入した。コア径 0.3 mm, NA値 0.22,長さ 10 mの石英ファイバーを用いたところ、波長 623 nm 周辺での透過率は 80 %であった。ファイバーから出射したレーザーは、2 枚のレンズにてビーム径と広がり角を調節し、分析セルに入射させた。このときのレーザービーム径は、セル中央で 3 mm 程度となった。セル内の光路上に、レーザービーム径に合わせた小孔板(バッフル板)を計 7 枚設置し、窓でのレーザー散乱光やセル外からの迷光の侵入を抑制した(図 4.2.12a)。セル後段にレーザー強度計(Spectra Physics 製 407A)を設置し、実際にセルを通過したレーザーパワーを常時モニタした。セル入射・出射窓での反射によって、レーザー強度は分析セル通過時に 17 %減少した。結果として、セルを通過したレーザー強度は 400 mW (623 nm)であった。

レーザービームおよび試料の流路と直交する方向に光電子増倍管(PMT)を設置し、励起分子から発せられる蛍光を検出した。セル中央部にて発する蛍光を、4 群 5 枚のレンズ系を用いて PMT 光電面に集光することで、検出効率の向上を図った。さらに、集光系と反対側に凹面鏡を設置し、蛍光を検出可能な立体角の拡大を図った。レーザー由来の散乱光を

低減して測定精度を向上するために、PMT 直前に光学フィルタを設置した。高感度・高精度測定のためには、蛍光の透過率が高く、散乱光を効率良く遮断するフィルタが望ましい。比較実験の結果から、前段にコールドミラーを置き、励起レーザー波長(623 nm)での透過率が 0.1 %以下で、蛍光波長(> 660 nm)での透過率が 50 %以上となるシャープカットガラスフィルタを後段に置く組合せを最適とした。コールドミラーも同様に、623 nm での反射率が高く、蛍光波長での透過率の高いものを採用したが、これによってレーザー由来の強い散乱光による後段ガラスフィルタの発光抑制を図った。こうして集光した蛍光を、長波長側まで感度を持つ PMT (浜松ホトニクス製 R943-02)によって検出した。光電面での暗電流を低減するために、PMT e-30 % に冷却した。蛍光は光子計数法によりカウントし、1 秒積算して PC に保存した。

効率の良い LIF 測定のためには、セル内を低圧に保持して、消光の寄与を抑制することが重要である。そこで、セル上部のアルミフランジ中央に、小孔(孔径 $0.4 \, \mathrm{mm}$)を持つ円板を設置し、この小孔を通して試料大気をセル内へと導入した。表面吸着による NO_3 損失を低減するために、小孔円板は弗素樹脂(PCTFE)製とし、アルミフランジ内面はハロカーボンワックスを均一に塗布した。セル後段に耐蝕型油回転ポンプ(アルバック製GCD-201X)を接続して吸引したところ、試料流量 $600 \, \mathrm{sccm}$ (sccm は標準状態における流量 $\mathrm{cm}^3/\mathrm{min}$)、セル内圧力 $6.0 \, \mathrm{torr}$ となった。さらに、 $\mathrm{S/N}$ 良く蛍光測定するために、光子計数のゲートタイミング設定を最適化した。

 N_2O_5 を NO_3 に変換・測定する際には、 NO_3 測定セル小孔の直前にヒーター管を設置した (図 4.2.12b)。温度上昇とともに、分解反応が急激に速くなる。

$$N_2O_5 \rightarrow NO_2 + NO_3 \tag{R4.2.5}$$

したがって、ヒーター管内での試料の滞留時間を十分に確保したうえで加熱することで、高い効率で N_2O_5 を NO_3 に変換することができる。ここで、 NO_3 の管内面への吸着による N_2O_5 変換・検出効率の低下を防ぐために、試料の滞留時間(試料流量、管の長さ・内径)および管の材質を決定することが重要である。本研究では、PFA 管 (内径 10 mm, 外径 12.7 mm, 長さ 50 cm, 内容積 40 cm 3)をヒーター管として採用した。試料を効率良く加熱するために、ヒーター管は内側から PFA 管、銅管、ヒーターリボン、断熱材、の多層構造とした。

LIF 法は蛍光強度の相対的測定法であり、 NO_3 絶対濃度測定のためには、濃度既知の NO_3 試料を用いた校正が不可欠である。しかし、 NO_3 は反応性が高く保存が困難であり、標準 試料の調製・保存は困難である。一方で、本装置では励起波長を 612.84 nm とすることに よって NO_2 濃度測定が可能である(検出下限 1 ppbv)。 NO_2 に関しては、標準試料の調整が 比較的容易である。そこで本研究では、NO 添加によって NO_3 から NO_2 が生成することを 利用して、 NO_2 の濃度変化から NO_3 濃度変化を求めて、その際の蛍光信号の変化との関係 から、 NO_3 検出装置の校正を行なった。合成した N_2O_5 を揮発・発生させ、測定装置に導入する。 N_2O_5 試料を LIF セルに導入する際に N_2O_5 の一部が熱分解し、 NO_2 と NO_3 を発生した。このときの NO_2 濃度(612.84 nm)および NO_3 信号(622.96, 618.81 nm 間の差)を測定した。 次に、 N_2O_5 試料に NO を添加したうえで、同様に NO_2 濃度と NO_3 信号を測定した。このとき、 N_2O_5 から生成した NO_3 の一部は NO と反応して、

$$NO_3 + NO \rightarrow 2 NO_2$$
 (R4.2.6)

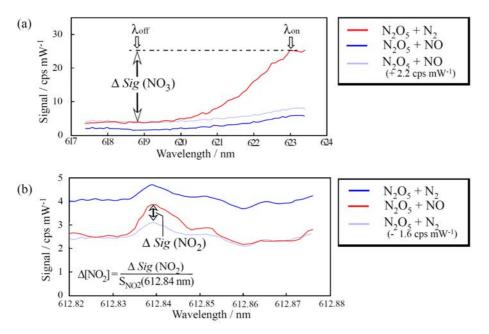


図 4.2.13 校正時の励起スペクトル

- (a) NO₃ 検出波長帯における、NO 添加前(赤)、添加後(青)の励起スペクトルおよび正味信号変化量を示すために青線を平行移動したもの(薄青).
- (b) NO_2 検出波長帯における、NO 添加前(青)、添加後(赤)の励起スペクトルおよび正味信号変化量を示すために青線を平行移動したもの(薄青).

によって NO_2 となる。 NO_3 が 1 分子消失したときに 2 分子の NO_2 が生成する。したがって、NO 添加したときの NO_2 , NO_3 濃度の変化量 $\Delta[NO_3]$, $\Delta[NO_2]$ は

$$\Delta[NO_2] = -2 \Delta[NO_3] \tag{R4.2.7}$$

によって関連付けられる。 NO_2 濃度変化 $\Delta[NO_2]$ は 612.84 nm 励起の測定から知ることができるので、 $\Delta[NO_3]$ も求められる。NO 添加前後に測定された NO_3 信号変化 $\Delta Sig(NO_3)$ と NO_3 濃度変化から、感度 S_{NO_3} が求まる。

$$S_{NO3}(\lambda_{on} - \lambda_{off}) = \frac{\Delta Sig(NO_3)}{\Delta[NO_3]} = -2\frac{\Delta Sig(NO_3)}{\Delta[NO_2]}$$
(R4.2.8)

校正時のNO添加による励起スペクトルの変化の例を図4.2.13に示す。NO添加によって、623 nm を極大とする NO₃信号が大きく減少し、同時に 612.84 nm の NO₂ 信号(面積)の増加が見られた。NO₂校正の結果を用いて NO₂信号変化から濃度変化の情報 Δ [NO₂]を得た。これを式 (4.2.8)に適用して NO₃ 感度を求めた。いくつかの濃度条件について Δ [NO₂]と Δ Sig(NO₃)を測定したところ、良い直線関係が得られた図 4.2.14。回帰直線の傾きから NO₃ 感度を求めた結果、 S_{NO3} (λ_{on} - λ_{off}) = 0.24 cps mW⁻¹ ppbv⁻¹ が得られた。NO 添加による NO₂ 濃度変化を用いた NO₃ 校正に成功した。試料導入口(オリフィス)の孔径は 0.4 mm と細いため、小孔通過時に表面で NO₃ が損失すると考えられる。そこで、オリフィス前後に NO 添加した場合の感度の相違から、オリフィス通過による NO₃ 損失率を求めた結果、孔径 0.4 mm

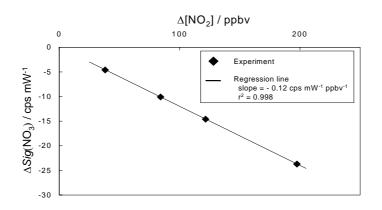


図 4.2.14 校正における NO 添加時の NO_2 濃度変化および NO_3 信号変化の関係。相関直線の傾きが、 NO_3 検出感度を表す

の PCTFE オリフィスの場合、表面での NO_3 損失率は 14%となり、オリフィスを含めた NO_3 感度は 0.21 cps mW^{-1} ppbv⁻¹ と求められた。この感度の値から、 NO_3 検出下限は 4 pptv (10 分値)が得られた。一方、オリフィス前段にヒーター管を設置した N_2O_5 測定モードでは、 N_2O_5 からの NO_3 生成効率は 80% と求められた(ヒーター管温度 95%)。 N_2O_5 測定に関する感度・検出下限はそれぞれ 0.17 cps mW^{-1} ppbv⁻¹, 6 pptv となった。

4.2.5. 夜間都市大気における NOx 消失の評価

NOx 発生源付近での夜間 NOx 消失を検討するため に、2003年12月24-27日に東京都八王子市の東京都 立大学工学部において、夜間都市大気観測を実施し た。測定装置は、工学部棟屋上の観測小屋に設置し た。観測では、 N_2O_5 の他に温度・相対湿度、 O_3 (紫外 吸光法)、NO、NO₂(化学発光法)、エアロゾル濃度(レ ーザー散乱法によるパーティクルカウンタ)を測定 した。図 4.2.15 に測定結果を示す。12/24 - 25 は NO が高く、最大で 200 ppbv に達したが、それ以外の夜 は比較的 NO 濃度が低かった。NO₃/N₂O₅の前駆体と なる NO₂ は観測期間を通じて 20 ppbv から 100 ppbv 程度で十分に存在したが、O3は NO との反応による 消失のために 30 ppbv 以下と低濃度であった。 N_2O_5 濃度測定値 [N₂O₅]_{obs} は期間を通じて 100 pptv 以上 であり、25 日には 800 pptv を超える高濃度の N₂O₅ が観測された。冬期都市大気の低温・高 NOx 濃度条 件下では、高濃度 N_2O_5 による NOx 消失が重要であ ると考えられた。

そこで今回の都市大気観測について、 NO_3 および N_2O_5 の NOx 消失に対する寄与を議論した。 NO_3 との 反応速度が大きい VOC について、観測地点における

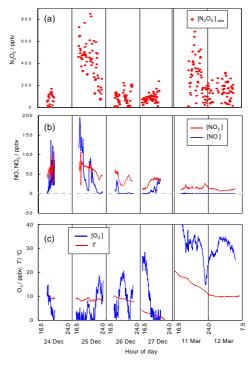


図 4.2.15 冬期夜間都市大気中の N_2O_5 測定結果(東京都立大学、2003年 12 月および 2004年 3月)

- (a) 実測 N₂O₅ 濃度(2 分平均値)
- (b) NO, NO₂ 測定值
- (c) O₃、気温の測定値

冬期夜間の典型的な濃度と反応速度から、 $NO_3 + VOC$ について検討した。 NO_3 消失を支配する VOC としては植物由来のテルペン類が重要であるが、冬期の夜間で植物活動は活発でないため、 NO_3 消失に有効でないことが示された。また、都市大気では夜間でも比較的高濃度の NO が存在するため、 NO_3 濃度が低くなる。したがって、今回の測定環境下では、 NO_3 と VOC の反応は NOx 消失に対して大きな寄与がないと考えられた。そこで、 NO_3 の VOC との反応による消失がないものと仮定し、 NO_3 と N_2O_5 について定常状態が成り立っていると仮定した。はじめに、簡単のために N_2O_5 消失反応を考慮しない場合、定常時の NO_3 , N_2O_5 の濃度 $[NO_3]_{SS}$, $[N_2O_5]_{SS}$ は

$$[NO_3]_{SS} = \frac{k_{NO2+O3}[NO_2][O_3]}{k_{NO4+NO3}[NO]}$$
(R4.2.9)

$$[N_2O_5]_{SS} = \frac{k_{NO2+NO3}[NO_2][NO_3]_{SS}}{k_{N2O5}}$$
 (R4.2.10)

で表すことができる。kは各反応の速度定数である。 NO_3 および N_2O_5 の原料となる NO_5 $NO_$

$$[N_{2}O_{5}]_{obs} = \frac{k_{NO2+NO3}[NO_{2}]^{2}[O_{3}]}{k_{NO+NO3}k_{N2O5}[NO] + (k_{NO2+NO3}[NO_{2}] + k_{NO+NO3}[NO])k_{y}}$$
(R4.2.11)

NO, NO₂, O₃, N₂O₅ 実測値を上式に代入することで、定常状態から N₂O₅ 消失速度 k_y を推定することができる。 k_y は、エアロゾル表面積 S_p に比例すると考えられるので、比例定数 α を用いて

$$k_{\rm y} = S_{\rm p} \times \alpha$$
 (R4.2.12)

と表すことができる。式(R4.2.9-4.2.12)から、

$$\frac{\left[N_2 O_5\right]_{SS}}{\left[N_2 O_5\right]_{obs}} = 1 + \alpha \cdot \beta \cdot S_p \qquad (R4.2.13)$$

ただし

$$\beta = \frac{k_{\text{NO2+NO3}}[\text{NO}_2] + k_{\text{NO+NO3}}[\text{NO}]}{k_{\text{NO+NO3}}k_{\text{N2O5}}[\text{NO}]}$$
(R4.2.14)

と表せる。2003/12/26 の測定結果について、図 4.2.16 に $\beta.S_p$ 対 $[N_2O_5]_{ss}/[N_2O_5]_{obs}$ をプロットしたところ、正の相関が得られた(相関係数 R=0.645)。式(R4.2.13)より、切片 = 1 のこのグラフの傾きは α であるから、比例定数 $\alpha=6.9\times10^3~{\rm cm}^3~{\rm cm}^{-2}~{\rm s}^{-1}$ が得られた。この

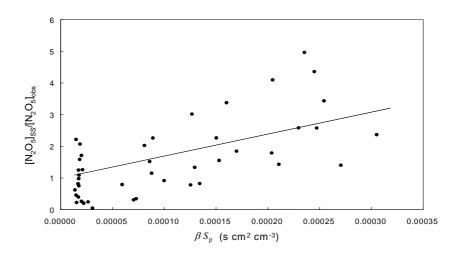


図 4.2.16 夜間都市大気におけるエアロゾル表面上での N_2O_5 消失速度の推定図(2003 年 12 月 26 日、東京都立大学). 切片 = 1 の相関直線の傾き α が、エアロゾル単位表面積あたりの N_2O_5 消失速度を表す.

 α の値と、パーティクルカウンタの測定から得られた S_p の平均値である 9.3×10^8 cm²cm⁻³ を用いて、式(R4.2.12)から k_y を求めたところ、 $k_y=6.4\times10^4$ s⁻¹ となり、夜間都市大気における N_2O_5 の消失速度を定量することができた。ただしこの数値は、 NO_3 + VOC による NO_3 消失 k_x も含めて推定しているので、 N_2O_5 消失項を過大評価している。厳密には、 $k_x=1.0\times10^2$ s⁻¹ を考慮した補正を行ない、 $k_y=5.2\times10^4$ s⁻¹。が得られた。さらに、 k_y から夜間大気における NO_3 の消失速度について考えた。 N_2O_5 が 1 分子消失することにより大気中からは正味 2 分子の NO_3 が除去されるので、 NO_3 の消失速度 L_{NOX} は

$$L_{\text{NOx}} = 2 k_y [N_2 O_5]$$
 (R4.2.15)

と表すことができる。今回の観測で得られた平均値[N_2O_5] = 106 pptv を用いたところ、 L_{NOX} = 2.7×10^6 molecules cm⁻³s⁻¹ となった。冬期の日没から日の出までの時間が 14.25 時間であり、夜間を通じて L_{NOX} が一定であると仮定すると、一晩の NO_X 消失量は 5.6 ppbv night⁻¹ となった。夜間 NO_X 消失の重要性を評価するために、昼間の $OH + NO_2$ による NO_X 消失量との比較を行った。 $OH = 1 \times 10^6$ molecules cm⁻³、 $OL_2 = 20$ ppbv、 $OL_3 = 20$ ppbv、 $OL_4 = 20$ ppbv、 $OL_4 = 20$ ppbv $OL_4 = 20$ ppbv O

エアロゾル表面での N_2O_5 消失は硝酸を生成するため、 NO_X 消失量は硝酸の生成量と等しいといえる。したがって、大気の酸性化に及ぼす影響という点で、夜間都市大気の N_2O_5 は昼間の $OH+NO_2$ と同程度に重要である。エアロゾルへの NO_3 イオンの取り込みや酸性 雨発生の研究の面でも、夜間大気中 NO_3 および N_2O_5 の実測から議論することは、非常に有意義であると考えられる。

表 4.2.1 冬期夜間都市大気における NOx 消失量の評価

	26 December 2003	11 March 2004
NO_3 消失速度 k_x * N_2O_5 消失速度 k_y * N_2O_5 濃度 時間的長さ(夜) Δ t 一晩あたりの NOx 消失量	1.0 x 10 ⁻² s ⁻¹ 5.2 x 10 ⁻⁴ s ⁻¹ 106 pptv 51300 s 5.6 ppbv night ⁻¹	1.0 x 10 ⁻² s ⁻¹ 4.0 x 10 ⁻⁴ s ⁻¹ 206 pptv 43860 s 7.3 ppbv night ⁻¹
日中の NOx 消失量**	7.3 ppbv day ⁻¹	8.9 ppbv day ⁻¹

^{*} k_x は $NO_3 + VOC$ 、 k_y はエアロゾル上での $N_2O_5 + H_2O$ の反応速度を表す.

4.3 化学摂動法による大気酸化過程の解明

大気の酸化能を知るためには OH ラジカルの濃度測定が本質的に重要となることは言うまでも無い。しかしながら、OH ラジカルの大気濃度は生成過程(オゾンの光分解に続く水蒸気との反応、亜硝酸の光分解、過酸化水素の光分解、オゾンとオレフィインの反応および HO2 ラジカルと NO の反応など)と消失過程(オゾン、NO、NO2、VOC、SO2 などの反応)のバランスにより規定されている。都市域での大気の酸化能について議論するためには OH ラジカルの生成と消失過程を独立に評価する必要がある。生成過程についても複数の反応が関与しており、簡単に定量することは困難である。一方消失過程では VOCs との反応にいたっては数百種類の化学物質を考慮する必要がある。これまでの大気光化学理論では OH ラジカルの消失過程については数十種類の VOCs を考慮することで進められてきた。OH ラジカルの濃度測定や生成・消失過程を独立して議論することは行はれてこなかった。本研究では大気中の OH ラジカルの大気寿命を測定することで OH ラジカルの消失過程を独立に議論できる手法(化学摂動法)について提案した(図 4.3.1)。具体的には大気中に紫外パルスレーザーを照射し能動的に OH ラジカルを生成させる。パルス的に生成した OH ラジカルは種々の大気化学成分と反応しながら減衰していくので、その減衰を実時間で捕捉することで OH ラジカルの大気寿命を測定するというものである。

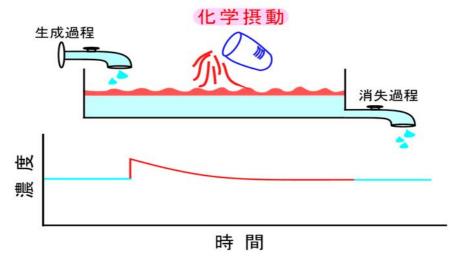


図 4.3.1 化学摂動法による消失過程測定の概念図

4.3.1. OH ラジカル大気寿命測定装置の開発

本研究で開発した大気中 OH ラジカルの寿命を測定する装置概要を図 4.3.2 に示す。反応管に大気を導入し、その中に繰り返し周波数 1 から数 Hz の Nd: YAG レーザー 第 4 高調

^{** [}OH] =1 x 10⁶ cm⁻³, [NO₂] = 20 ppbv とした場合.

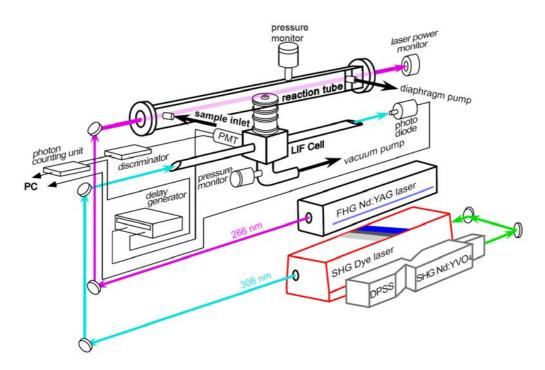


図 4.3.2 OH ラジカル大気寿命測定装置概略図

波 (266 nm: パルス幅 6 ns: エネルギー約 $10 \, \mathrm{mJ}$) を照射する。大気中に存在するオゾンの 光分解により $O(^1D)$ が生成し速やかに水蒸気と反応し人為的に OH ラジカルがパルス的に

$$O_3 + hv(\lambda=266 \text{ nm}) \rightarrow O(^1D) + O_2$$

 $O(^1D) + H_2O \rightarrow 2OH$

生成される。寿命を決定するには、パルス的に生成し たOHラジカルの濃度の時間に対する減衰を測定する。 OH ラジカルの濃度測定にはレーザー誘起蛍光法を用 いる。繰り返し周波数 10 kHz の 308 nm パルスレー ザー (Nd: YAG 第2高調波励起色素レーザー2倍波) を光源とし、OH ラジカルの A-X(0,0) バンドを励起 させ、そこから発せられる同バンドの蛍光を検出する ことにより濃度を測定する。プローブレーザーのパル スとパルスの間隔は正確に 100 us であることからプ ローブパルスをタイムベースとして遅延時間を得た。 反応管内の大気は直径 1 mm の小孔より蛍光セル内 を2Torr程度の真空にすることによって蛍光セル内に 導入される。レーザーによる散乱光と OH からの蛍光 とを区別するために、光電子増倍管にタイムゲートを かけ、蛍光をなるべく選択的に測定できるようにして いる。反応官内は約20 l min-1 の流速で試料空気が流 れており約500 ms で完全に新しい空気と入れ替わる

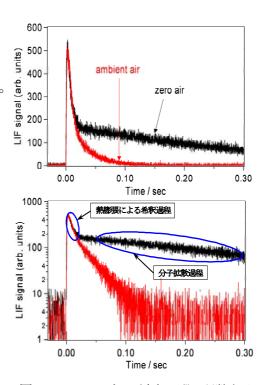


図4.3.3 OH ラジカル減衰(下段は対数表示) 黒:ゼロガス, 赤:実大気

ようにした。ポンプパルスの繰返しは通常 1-5 Hz であり、300 回程度の積算を行い、OH 減衰曲線を得ることから、1-5 分程度の時間分解能である。 人為的に生成した OH ラジカル は2つの過程により減衰する。気体の運動による物理過程と OH の反応による化学過程で ある。物理過程では、パルスレーザー照射による急な加熱に対する熱膨張過程による希釈 過程と濃度勾配による分子拡散過程がある。図 4.3.3 の黒線がゼロガスの OH ラジカルの減 衰である。30 ms 程度の速い減衰が熱膨張によるもので 300 ms 程度の遅い過程が分子拡散 によるものである。実大気の測定では同図の赤色の線で示すように速い熱膨張の減衰は変 わらず遅い減衰成分が早くなっていることがわかる。このことから遅い成分の解析を行う ことにより OH ラジカルの大気中での化学反応速度(大気寿命の逆数)を得ることができる ことが明となった。

本装置の精度を検証するためにゼロガスに既 知濃度の CO を混合し、本装置により OH ラジ カルの減衰曲線を得て反応速度を調べた。種々 の CO 濃度に対して反応速度をプロットすると 図 4.3.4 のように良好な直線が得られた。この直 線の傾きから OH ラジカルと CO の反応速度定 数を決定したところ 2.41 x 10^{-13} cm³ s⁻¹となり JPL の推奨値 $2.36 \times 10^{-13} \text{ cm}^3 \text{ s}^{-1}$ と一致した。こ のことから本装置の精度が実証された。

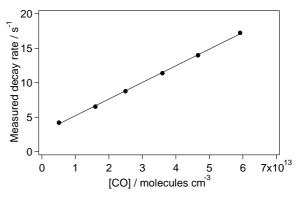


図 4.3.4 OH 反応速度の CO 濃度依存性

4.3.2. 都市大気総合観測

本装置を高感度化し、ガス流量の最適化、感度校正、反応速度既知の合成ガスでの検証 実験、PC による全自動運転などを行い 2003 年夏から本格的に都立大学周辺大気の観測を 行った。観測では OH ラジカルの反応速度に加えて、NO/NO₂、オゾン、CO、SO₂および VOCs を同時に観測した。VOCs はキャニスターサンプリング/GC-MS あるいは GC-FID 法 により1時間おきに分析を行った。

	表 4.3.1 集中観測で測定された VOC	
Alkanes	ethane, propane, <i>i</i> -butane, <i>n</i> -butane, <i>i</i> -pentane, <i>n</i> -pentane, cyclopentane, 2,2-dimethylbutane,2,3-dimethylbutane,2-methylpentane,3-methylpentane, methylcyclopentane, <i>n</i> -hexane, cyclohexane, 2,3-dimethylpentane, 2-methylhexane, 3-methylhexane, methylcyclohexane, <i>n</i> -heptane, 2,2,4-trimethylpentane, 2,3,4-trimethylpentane, 2-methylheptane, 3-methylheptane, <i>n</i> -octane, <i>n</i> -nonane	
Alkenes	ethylene, propylene, 1-butene, butadiene, trans-2-butene, cis-2-butene, 2-methyl-2-butene, 3-methyl-1-butene, 1-pentene, trans-2-pentene, cis-2-pentene, cyclopentene, 2-methyl-1-pentene, 4-methyl-1-pentene, trans-2-hexene, cis-2-hexene	
Aromatics	benzene, toluene, ethylbenzene, stylene, <i>o</i> -xylene, <i>m</i> -xylene, <i>p</i> -xylene, <i>i</i> -propylbenzene, <i>n</i> -propylbenzene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene	
Alkynes	Acetylene	
Biogenics	isoprene, α -pinene, β -pinene	
Oxygenates	formaldehyde, acetaldehyde, methanol, ethanol, acetone	

OVOCs と一部の VOCs については PTR-MS により高い時間分解能(1 分値)で観測を行いキ ャニスター法でしか得られないものについては PTR-MS で得られた情報と相関を取りなが ら外挿し連続的なデータを得た。観測期間は 2003 年 7 月 29 日 - 8 月 20 日、2004 年 1 月

26 日-2 月 5 日および 5 月 11 日-15 日である。実測の OH 反応速度(kobs)と計算で得られ

$$\mathbf{k_{cal}} = k_{CO} [CO] + k_{NO} [NO] + k_{NO2} [NO_2] + k_{O3} [O_3] + k_{SO2} [SO_2] + \sum k_i [HCs_i] + \sum k_j [OVOCs_j]$$

る反応速度(k_{cal})(OH との反応相手の速度定数とそれぞれの反応相手の濃度を乗じて足し合わせたもの)との比較をおこなうことにより大気反応機構についての知見を得ることを目的とした。

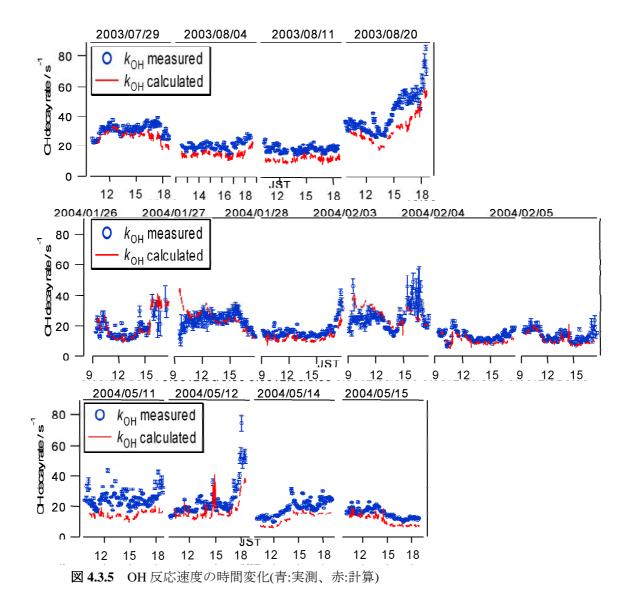


図 4.3.5 に集中観測により得られた OH 反応速度と計算結果を示す。上段から夏季、冬季および春季の順番である。青が実測の OH 反応速度であり、赤が計算結果である。両者の変動傾向が良く一致していることから本研究で行った OH 反応速度の実大気測定は妥当なものであると考えられる。

冬季は実測の反応速度と計算が良く一致しているものの夏と春の観測では少なからず実 測の方が計算値より大きな値となった。不一致の原因については以下の3つが考えられる。

- 1) ON+NO₂の反応速度定数の誤差
- 2) エアロゾルによる OH ラジカルの取込み
- 3) 未知なる OH の消失過程

まず 1)の可能性について検討した。OH+NO2の反応速度について本手法で開発した装置に

より実大気環境下で反応速度定数を測定した ところ、水蒸気の依存性があることが明らか となった(図 4.3.6)。 乾燥条件下では JPL の推 奨値より約4割大きい値となった。IUPACの 推奨値より2割大きい値である。これらの推 奨値は全て低圧での測定値から大気圧へ外挿 されたものであり、バッファーガスとして希 ガスや窒素を用いており実大気での測定では ないことが不一致の原因と考えられる。また、 水蒸気の増加に伴い反応速度定数は減少し、 実大気レベルでは乾燥条件下に比べて約4割 小さいことが明らかとなった。大気中の NO2 は水蒸気と錯体を形成し NO2単体より OH と の反応性が低くなったためと考えられる。現 在 ap-initio 計算により錯体の安定性について 計算中である。これらを補正しても実測の OH 減衰と計算値の不一致を説明することができ なかった(図 4.3.5 の計算による OH の反応速 度はすでに水蒸気補正を行った反応速度定数 を用いている)。次にエアロゾルの取込みにつ いて検討した。大気導入口にテフロンフィル

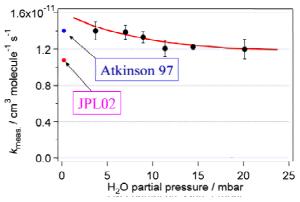



図 4.3.6 OH+NO2 反応速度定数の水依存性

ターを装着しエアロゾルを除去したが結果は変化しなかった(図 4.3.7 の薄いピンクがフィルター装着時で濃いピンクが脱着時)。また同時に観測したエアロゾル表面密度に対して取込み係数を 1 と仮定してエアロゾル寄与を見積もったが 3 割の不一致を説明するには全く不十分であった。現在は 3)の可能性である未知なる OH ラジカルとの反応相手が最も有力であると考えられる。図 4.3.7 に夏季に得られた計算による反応速度とその内訳を色分けして示した。OH 反応で最も重要なものは VOCs との反応であり全体の 40% を占める。次に重要な反応相手は NO_2 である。その次に重要なのは未知なる反応相手であり、やはり 20% 以上の寄与があった。不一致の起こる状況は大気が清浄な場合でも汚染がひどい場合でも起こることがわかる。

4.3.3. 未知なる OH 反応相手

実測による OH 反応速度と計算によるそれの相関を図 4.3.8(左)に示す。冬は傾きが 1 に近いが、夏と春は実測が大きくなり、未知なる反応相手の寄与が増加している。同図(右)に内訳を示す。未知なる反応相手は春では 34 %にも及ぶ。春と夏は気温の上昇により VOCsの発生源が強くなることと冬季は境界層高度の変動で窒素酸化物濃度が上がることを反映して、冬は OH の反応相手として NO_2 が最も重要であり、春や夏では VOCs の方が重要となることが明らかとなった。

未知なる OH ラジカルの反応相手につ いて探索するために、不一致量 Δk_{OH} (= k_{obs} - k_{cal})と種々の化学物質との相関を調べた ところオゾンおよび OVOCs が顕著な相関 が見られた(図 4.3.9)。 これらの化合物は大 気中で 2 次的に生成してくる化学物質で あることから、本研究で明らかとなった未 知なる OH ラジカルの反応相手は大気中 で生成してくる化学物質(例えばアルデヒ ドやケトン等)である可能性が高い。冬に 顕著な影響が現れないことと、光化学反応 活性が高い春や夏に未知なる反応相手が 多いことから妥当な解釈であると考えら れるが現状では物質の特定には至ってい ない。一般的に VOCs が大気中で光酸化 を受けると蒸気圧の低い含酸素有機化合 物になると考えられている。このような準 揮発性化合物(SVCs)はエアロゾル相と気 相を行き来するため大気測定で観測がで

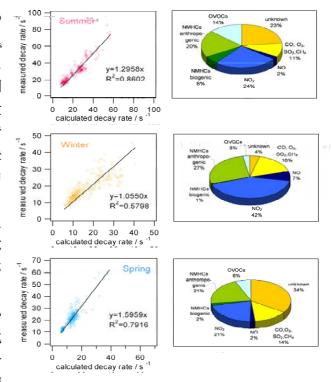
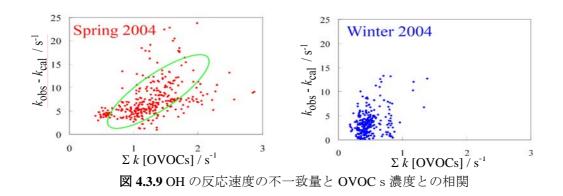



図 4.3.8 実測 OH 反応速度と計算値の相関(左)、 計算値の内訳(右)

きていない場合も考えられ今後の詳細な検討が待たれている。過酸化ラジカルと NO の反応では一般的に NO_2 とアルコキシラジカルが生成すると考えられているがアルキル基が大きくなった場合は付加反応により有機硝酸エ

ステルが生成する場合もある。有機硝酸エステル類は大気中で準安定であり、紫外線や熱により分解が促進される。さらに OH ラジカルとの反応も確認されており、本研究で得られた未知なる OH ラジカルの反応相手である可能性についても指摘しておく。

4.3.4. オキシダントポテンシャル(大気質診断に向けた指標)

大気質の評価ではその目的により大きく結果が異なる。一次排出物を対象とする場合(例えば酸性沈着など)はその物質の大気濃度の評価でことが済むが、オキシダント(オゾン)の評価についてはその前駆物質について評価する必要がある。オゾンの前駆物質としては窒素酸化物(NOx)、揮発性有機化合物(VOCs)および一酸化炭素が重要である。従来は VOCs

では非メタン炭化水素(NMHC)の一部を考慮するだけで行われてきた。NMHC の中でも二重結合を有するものは OH ラジカルと速く反応しオゾン生成に大きく寄与する。酸素を含むような VOCs もオゾン生成に寄与するがこれらを不十分な状態で一括りにして考えられてきた。これらの VOCs をすべて網羅的に測定し評価することは大変労力を必要とする。そこで本研究で提案している OH ラジカルの寿命測定からオキシダント生成に対する大気質の評価を行った。

大気中でひとたび生成した OH ラジカルが最終的に NO_2 と反応し硝酸(HNO_3)になるまでにどれだけ多くの RO_2 および HO_2 を産出すかがオキシダントの生成に直接かかわる。ここでひとたび生成した OH ラジカルとは NO との反応で再生してきてものは含まれず、オゾン、アルデヒドや亜硝酸の光分解により作られたものと定義する。都市大気の場合 NOx 濃度が高いので、過酸化ラジカル(RO_2 および HO_2)は全て NO を酸化し NO_2 生成に寄与する。生成した NO_2 は光分解で全てオゾンを生成すると仮定できる。

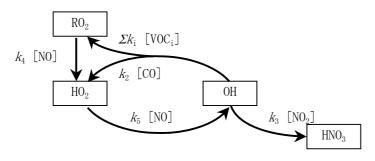
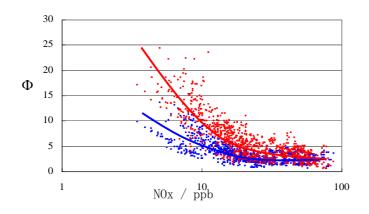



図 4.3.10 オキシダントポテンシャル計算で考慮する反応スキーム

1分子の OH ラジカルから産出しうる過酸化ラジカルの数について定量評価を行った。本研究で得られる大気寿命 τ_{OH} は Σk_i [VOC_i] + k_2 [CO] + k_3 [NO₂]の逆数とできる。SO₂ やオゾンとの反応の寄与は無視し得る。大気寿命の観測ではそれに加えて CO および NOx の観測を行っているので τ_{OH} から直接 Σk_i [VOC_i]が決定される。それぞれの反応速度定数は精密に決定されているので大気中に生成した 1 分子の OH ラジカルから何分子の過酸化ラジカルが生成したか(積算生成量)をオキシダントポテンシャル Φ と定義し以下の式に従って計算した。

$$\Phi = \frac{\int_{0}^{\infty} \{d[RO_{2}] + d[HO_{2}]\}}{[OH](t=0)}$$

本研究で得られた集中観測結果(平成 14 年夏、平成 15 年冬および春)の結果についてオキシダントポテンシャルの計算を行った。図 4.3.11 では観測された 61 種類の VOCs のみを考慮した結果から算出した Φ を青でプロットした。赤はOH寿命測定で得られた結果を用い

図 4.3.11 オキシダントポテンシャルの NOx 依存性 (青:61種類の化学分析結果、赤:OH寿命測 定結果)

て算出したものである。窒素酸化物の濃度が 20 ppbv を越えたところでは両者には明確な差が無く値も 2 程度と小さい。しかしながら低濃度の NOx 領域では明確に両者には差異が認められた。これは前項で示した未知なる OH ラジカルの反応相手が 2 から 3 割程度存在することによる。単一の現象として OH ラジカルの反応を見た場合は 2-3 割程度の差しか与えないが、OH が大気中から除去されるまでにどれだけオキシダントを作る能力があるかを評価すると非線形な結果を与え数倍に増幅することがわかった。汚染の激しい都市域ではオキシダント生成自身が強く抑えられているが、郊外地域ではオキシダント生成効率が高く、未知なる OH の反応相手の寄与が非常に大きくなることが明らかとなった。

オキシダントポテンシャルを用いてオゾン生成量Δozone を見積もることも可能である。 単位時間当たり何分子のオゾンを生み出すかが最終的に最も重要な情報となる。本研究で 提案しているオキシダントポテンシャルは大気質を与えるものであり、直接オキシダント 生成量を与えるものではない。

$$\Delta ozone = \Phi \int_{t}^{t+\Delta t} P_{[OH]} dt$$

オキシダントポテンシャルは単一の OH ラジカルから大気中で生成しうる過酸化ラジカルを定量した値であるから、ある時間内に大気中に生成しうる OH ラジカル量をオキシダントポテンシャルに乗ずることにより、ある時間内(Δt)に大気中で生成するオゾン量が定義できる。従来は過酸化ラジカル濃度に反応速度定数と[NO]を乗じたものを用いてきた。

$$\Delta ozone = \{ k_5 [HO_2] + k_4 [RO_2] \} [NO] \Delta t$$

この式によりオゾン生成速度を議論する場合、過酸化ラジカル濃度を直接評価する必要がある。過酸化ラジカル濃度は大気質と太陽紫外線強度の両方に依存するのでその場で得られたものから一般化して代表性のあるものにするのが困難である。しかしながら我々が本

研究で提案するオキシダントポテンシャルを用いると大気質(**Φ**)と紫外線強度とに分けて 議論することが可能となるので非常に有効な大気質の診断指標となると考えられる。

4.3.5. オゾンのウイークエンド効果

都心部よりもややはなれた地域に高 濃度オキシダントが発生する傾向がみら れ、都市大気中の光化学反応についての 更なる知見が必要とされてきている。都 心から30 kmほど離れた都立大学キャン パスにてオゾン、一酸化炭素、窒素酸化 物、二酸化硫黄などの連続観測を行って いる。都市大気における典型的日変動パ ターンがみられる。平日・週末のそれぞ れの平均濃度(図4.3.12)を比較すると、発 生源からの一次排出物である窒素酸化物 などは交通量が多い平日の方が週末より も高濃度になる。週末にオゾン濃度が平 日より高くなる現象は大都市の郊外地域 でしばしば観測されるものであり、その 原因について考察した。都市域ではオゾ ン濃度がしばしば前駆物質であるNOx濃 度と逆相関を示すことがある。これは主 $\mathbb{C}NO+O_3\rightarrow NO_2+O_2(オゾンの滴呈反応)$ の反応によりオゾンが消失するためであ る。図4.3.13にオゾンおよびNOの月平均 値の平日と休日の差を月毎に表示した。9 月から1月まで(赤色のハッチ)はオゾン の週末に増加する $\pm \Delta O_3$ とNOの減少 $\pm \Delta$ NOがよく対応していることからオゾン の滴呈反応により説明できる。しかし5 月から7月(青色のハッチ)にかけてはΔO₃ がはるかにΔNOを上回っており上記の説 明では不十分である。オゾンの光化学的 生成の効率がNOx濃度に依存しているこ とを示唆するものであるので、本研究で 求めたオキシダントポテンシャルを使っ て調べてみた。図4.3.14にオキシダントポ

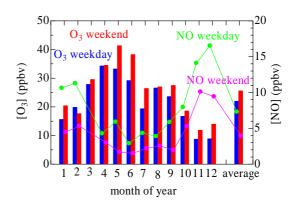


図 4.3.12 都立大周辺で観測された汚染物質の平日と週末の比較

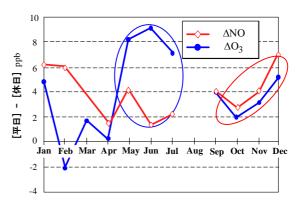


図 4.3.13 オゾンおよび NO の平日と 週末の月平均濃度の差

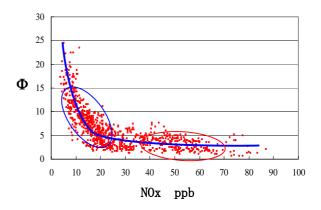
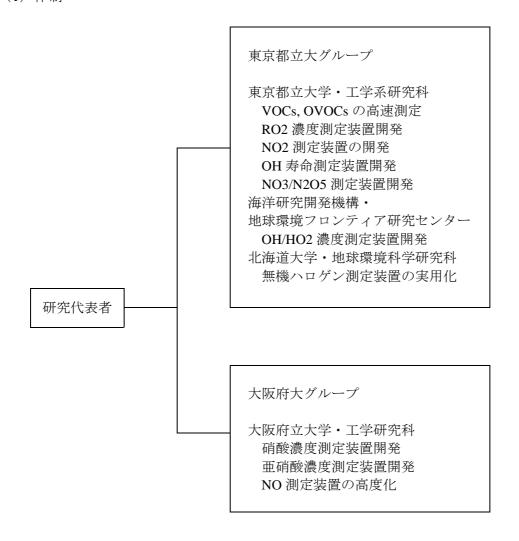



図 4.3.14 オキシダントポテンシャルと NOx の関係(赤のハッチは冬季、 青のハッチは春季を示す)

テンシャルとNOxの関係を示した。冬季はNOx濃度が高く40-80 ppbv存在している(赤のハッチ)。このような状況の中で週末にNO濃度が5-10 ppbv程度減少してもΦはほとんど変化しない。一方5-7月のNOxは5-25 ppbvであり(青のハッチ)、この領域ではΦはNOx濃度に対して大きな感度を示しNOが5 ppbv減少するとΦは非線形に大きくなる。春から初夏にかけて都立大学周辺で観測されたウイークエンド効果はこのようなオキシダント生成能のNOx濃度依存性により説明される。ウイークエンド効果を調べることはNOxの制御実験を実施していると見立てることができ大変貴重な情報を提供している。ここで得られた結果はオキシダント生成能がNOx濃度に依存していることからオキシダント生成能が地域特性を強く持つことを示している。それ故その地域に即した1次前駆物質の規制を行っていく必要があることを強く示唆している。

5. 研究実施体制

(1) 体制

(2) メンバー表

①東京都立大グループ

,	氏 名	所 属	役職	研究項目	参加時期
梶井	克純	東京都立大学大学院工学研究科	教授	研究総括	H11.11-H17. 3
加藤	俊吾	同上	助教授	炭化水素測定	H11.11-H17. 3
松本	淳	同上	CREST 研究員	NO ₃ 濃度測定	Н11.11-Н17. 3
定永	靖宗	同上	CREST 研究員	HOx ラジカル測定	H11.11-H17. 3
谷口	陽子	同上	研究補助員		H12. 7-H17. 3
松永	壮	同上	学振特别研究員	大気エアロゾル測定	H15. 4-H17. 3
廣川	淳	北大大学院地球環境科学研究科	助教授	無機ハロゲン装置	Н11.11-Н17. 3
谷本	浩志	東京大学先端科学技術研究センター	大学院生	有機硝酸測定	H11.11-H13. 3
中村	憲司	同上	大学院生	HOx ラジカル装置	H11.11-H14. 3
石黒	貴美子	同上	研究補助員		H11.11-H12. 3

金谷 有剛	-tt	m'//. I.		2.KT#1	, 12 11 24 75 75 75 75 75 75 75 75 75 75 75 75 75	
Pochanart Pakpong 同上 研究員 化学デル開発 H13.4-H17.3 M2 豊 東京大学先端科学技術研究ヒンクー 技化 東京大学先端科学技術研究ヒンクー 技化 大学院生 大学院生 内2 和3.4 H14.1 H17.3 大学院生 内3 和4 H14.3 H17.3 H15.4 H1	藤田	雅之	(財)レーザー技術総合研究所	主任研究員	レーザー光学系設計	H11.11-H17. 3
松見 豊 表古屋大学太陽地球環境研究所 教授 CO の連続観測 H12.4 H17.3 H14.3 H17.3 H14.1 H17.3						
新師 雄一 東京大学先端科学技術研究セクー 特任助教授 講師						
谷 晃 東海大学 講師 炭化水素測定 H14.11-H17.3 金子 達也 東京都立大学工学部 学部学生 炭化水素測定 H14.4-H15.3 桜井 健一 同上 学部学生 炭化水素測定 H14.4-H15.3 花園 陽子 同上 学部学生 炭化水素測定 H14.4-H15.3 市川 雅子 同上 学部学生 サ**・沙濃度測定 H15.4-H16.3 市川 雅子 同上 学部学生 炭化水素測定 H15.4-H16.3 市水 和子 日本女子大学理学部 大学院生 OH 寿命測定 H15.4-H16.3 市野 彩子 東京都立大学大学院工学研究科 大学院生 OH 寿命測定 H15.4-H17.3 市上 大学院生 NO3測定 H15.4-H17.3 H15.4-H17.3 市山 綾香 同上 大学院生 OVOC 測定 H15.4-H17.3 H15.4-H17.3 市川 成樹 同上 大学院生 NO3測定 H15.4-H17.3 H15.4-H17.3 大学院生 同上 大学院生 OVOC 測定 H15.4-H17.3 H15.4-H17.3 大学院生 同上 大学院生 OVOC 測定 H15.4-H17.3 H15.4-H17.3 大学院生 同上 大学院生 OVOC 測定		_	名古屋大学太陽地球環境研究所			
金子 達也 東京都立大学工学部 学部学生 炭化水素測定 H14.4 H15.3 RO2 測定 H15.4 H16.3 RO2 測定 H15.4 H17.3 RO3 測定 H16.4 H17.3 RO3 测定 H16.4 H17.3 RO3 NO3 测定 H16.4 H17.3 RO3 NO3 测定	駒崎	,	東京大学先端科学技術研究センター			H14. 3-H17. 3
校井 健一 同上 学部学生 学部学生 炭化水素測定 H14.4-H15.3 炭化水素測定 H14.4-H15.3 炭化水素測定 H14.4-H15.3 炭化水素測定 H14.4-H15.3 炭部学生 炭化水素測定 H15.4-H16.3 大学院生 大学院生 NO3測定 H15.4-H17.3 RO2 測定 H15.4-H17.3 RO3 測定 H15.4-H17.3 RO3 測定 H15.4-H17.3 RO4 RO5 ※	谷	晃	東海大学	講師	炭化水素測定	H14.11-H17. 3
校井 健一 同上 学部学生 学部学生 炭化水素測定 H14.4-H15.3 炭化水素測定 H14.4-H15.3 炭化水素測定 H14.4-H15.3 炭化水素測定 H14.4-H15.3 炭部学生 炭化水素測定 H15.4-H16.3 大学院生 大学院生 NO3測定 H15.4-H17.3 RO2 測定 H15.4-H17.3 RO3 測定 H15.4-H17.3 RO3 測定 H15.4-H17.3 RO4 RO5 ※						
保古 健一 同上 学部学生 炭化水素測定 田14、4-H15、3 日上 学部学生 対プン濃度測定 田14、4-H15、3 日本 女子大学理学部 日本 女子大学理学部 大学院生 大学院生 日本 女子大学理学部 日本 女子大学理学部 大学院生 日15、4-H17、3 日上 大学院生 NO3 測定 日15、4-H17、3 NO2 測定 日15、4-H17、3 日上 大学院生 OVOC 測定 日15、4-H17、3 日上 大学院生 OVOC 測定 日15、4-H17、3 日上 大学院生 OVOC 測定 日15、4-H17、3 日上 大学院生 日本 本がプン濃度測定 日本 本がアン濃度測定 日本 本がアン濃度 日本 本がアン濃度測定 日本 本がアン濃度測定 日本 本がアン濃度 日本 本がアン流度 日本	金子	達也	東京都立大学工学部	学部学生	炭化水素測定	H14. 4-H15. 3
若園 陽子 同上 学部学生 OH 寿命測定 H14.4-H15.3 林 一郎 同上 学部学生 大学院生 炭化水素測定 H15.4-H16.3 清水 絢子 日本女子大学理学部 大学院生 OH 寿命測定 H15.4-H16.3 古野 彩子 東京都立大学大学院工学研究科	桜井	健一	同上	学部学生	RO ₂ 測定	H14. 4-H15. 3
市川 雅子	保古	健一	同上	学部学生	炭化水素測定	H14. 4-H15. 3
株 一郎	若園	陽子	同上	学部学生	OH 寿命測定	H14. 4-H15. 3
清水 絢子 日本女子大学理学部 学部学生 長疗 水計算 H15. 4-H16. 3 吉野 彩子 東京都立大学大学院工学研究科	市川	雅子	同上	学部学生	オゾン濃度測定	H15. 4-H16. 3
吉野 彩子 東京都立大学大学院工学研究科 大学院生	林	一郎	同上	学部学生	炭化水素測定	H15. 4-H16. 3
磯崎 涼子 同上 大学院生 RO2 測定 H15. 4-H17. 3 小杉 如央 同上 大学院生 NO3 測定 H14. 4-H17. 3 西山 綾香 同上 大学院生 NOx 測定 H15. 4-H17. 3 宮川 祐子 同上 大学院生 HOx ラジカル測定 H15. 4-H17. 3 秋山 成樹 同上 大学院生 NOx 測定 H15. 4-H17. 3 水山 成樹 同上 大学院生 NO3 測定 H15. 4-H17. 3 渡辺 敬祐 同上 大学院生 OH 寿命測定 H15. 4-H17. 3 水井手口 真澄 同上 大学院生 OVOC 測定 H16. 4-H17. 3 Suthawaree Jeeranut 同上 大学院生 NOx 測定 H16. 4-H17. 3 後藤 優介 同上 学部学生 NOx 測定 H16. 4-H17. 3 後藤 優介 同上 学部学生 RO2 測定 H16. 4-H17. 3 田中 浩輔 同上 学部学生 炭化水素測定 H16. 4-H17. 3	清水	絢子	日本女子大学理学部	学部学生	モデル計算	H15. 4-H16. 3
磯崎 涼子 同上 大学院生 RO2 測定 H15. 4-H17. 3 小杉 如央 同上 大学院生 NO3 測定 H14. 4-H17. 3 西山 綾香 同上 大学院生 NOx 測定 H15. 4-H17. 3 宮川 祐子 同上 大学院生 HOx ラジカル測定 H15. 4-H17. 3 秋山 成樹 同上 大学院生 NOx 測定 H15. 4-H17. 3 水山 成樹 同上 大学院生 NO3 測定 H15. 4-H17. 3 渡辺 敬祐 同上 大学院生 OH 寿命測定 H15. 4-H17. 3 水井手口 真澄 同上 大学院生 OVOC 測定 H16. 4-H17. 3 Suthawaree Jeeranut 同上 大学院生 NOx 測定 H16. 4-H17. 3 後藤 優介 同上 学部学生 NOx 測定 H16. 4-H17. 3 後藤 優介 同上 学部学生 RO2 測定 H16. 4-H17. 3 田中 浩輔 同上 学部学生 炭化水素測定 H16. 4-H17. 3						
大学院生	吉野	彩子	東京都立大学大学院工学研究科	大学院生	OH 寿命測定	H15. 4-H17. 3
西山 綾香 同上 大学院生 NOx 測定 H15. 4-H17. 3 宮川 祐子 同上 大学院生 OVOC 測定 H15. 4-H17. 3 吉岡 篤史 同上 大学院生 HOx ラジカル測定 H15. 4-H17. 3 秋山 成樹 同上 大学院生 NOx 測定 H15. 4-H17. 3 今井 秀和 同上 大学院生 OH 寿命測定 H15. 4-H17. 3 渡辺 敬祐 同上 大学院生 OVOC 測定 H16. 4-H17. 3 Suthawaree Jeeranut 同上 大学院生 NOx 測定 H16. 4-H17. 3 後藤 優介 同上 学部学生 NOx 測定 H16. 4-H17. 3 後藤 優介 同上 学部学生 成化水素測定 H16. 4-H17. 3 田中 浩輔 同上 学部学生 炭化水素測定 H16. 4-H17. 3	磯崎	涼子	同上	大学院生	RO ₂ 測定	H15. 4-H17. 3
宮川 祐子 同上 大学院生 OVOC 測定 H15. 4-H17. 3 吉岡 篤史 同上 大学院生 HOx ラジ カル測定 H15. 4-H17. 3 秋山 成樹 同上 大学院生 NOx 測定 H15. 4-H17. 3 今井 秀和 同上 大学院生 OH 寿命測定 H15. 4-H17. 3 渡辺 敬祐 同上 大学院生 OVOC 測定 H16. 4-H17. 3 メナチロ 真澄 同上 大学院生 カゾン濃度測定 H16. 4-H17. 3 Suthawaree Jeeranut 同上 大学院生 NOx 測定 H16. 4-H17. 3 後藤 優介 同上 学部学生 RO2 測定 H16. 4-H17. 3 世中 浩輔 同上 学部学生 炭化水素測定 H16. 4-H17. 3	小杉	如央	同上	大学院生	NO ₃ 測定	H14. 4-H17. 3
吉岡 篤史 同上 大学院生 HOx ラジカル測定 H15. 4-H17. 3 秋山 成樹 同上 大学院生 NOx 測定 H15. 4-H17. 3 今井 秀和 同上 大学院生 NO3 測定 H15. 4-H17. 3 渡辺 敬祐 同上 大学院生 OH 寿命測定 H16. 4-H17. 3 井手口 真澄 同上 大学院生 OVOC 測定 H16. 4-H17. 3 Suthawaree Jeeranut 同上 大学院生 NOx 測定 H16. 4-H17. 3 後藤 優介 同上 学部学生 RO2 測定 H16. 4-H17. 3 田中 浩輔 同上 学部学生 炭化水素測定 H16. 4-H17. 3	西山	綾香	同上	大学院生	NOx 測定	H15. 4-H17. 3
秋山 成樹 同上 大学院生 NOx 測定 H15. 4-H17. 3 今井 秀和 同上 大学院生 NO ₃ 測定 H15. 4-H17. 3 渡辺 敬祐 同上 大学院生 OH 寿命測定 H15. 4-H17. 3 井手口 真澄 同上 大学院生 OVOC 測定 H16. 4-H17. 3 Suthawaree Jeeranut 同上 大学院生 がご>濃度測定 H16. 4-H17. 3 今川 宏介 東京都立大学工学部 学部学生 NOx 測定 H16. 4-H17. 3 後藤 優介 同上 学部学生 RO ₂ 測定 H16. 4-H17. 3 田中 浩輔 同上 学部学生 炭化水素測定 H16. 4-H17. 3	宮川	祐子	同上	大学院生	OVOC 測定	H15. 4-H17. 3
今井 秀和 同上 大学院生 NO3測定 H15. 4-H17. 3 渡辺 敬祐 同上 大学院生 OH 寿命測定 H15. 4-H17. 3 井手口 真澄 同上 大学院生 OVOC 測定 H16. 4-H17. 3 Suthawaree Jeeranut 同上 大学院生 オゾン濃度測定 H16. 4-H17. 3 今川 宏介 東京都立大学工学部 学部学生 NOx 測定 H16. 4-H17. 3 後藤 優介 同上 学部学生 RO2 測定 H16. 4-H17. 3 田中 浩輔 同上 学部学生 炭化水素測定 H16. 4-H17. 3	吉岡	篤史	同上	大学院生	HOx ラジカル測定	H15. 4-H17. 3
渡辺 敬祐同上大学院生OH 寿命測定H15. 4-H17. 3井手口 真澄同上大学院生OVOC 測定H16. 4-H17. 3Suthawaree Jeeranut同上大学院生わり、ン濃度測定H16. 4-H17. 3今川 宏介東京都立大学工学部学部学生NOx 測定H16. 4-H17. 3後藤 優介同上学部学生RO2 測定H16. 4-H17. 3田中 浩輔同上学部学生炭化水素測定H16. 4-H17. 3	秋山	成樹	同上	大学院生	NOx 測定	H15. 4-H17. 3
井手口 真澄 同上 大学院生 OVOC 測定 H16. 4-H17. 3 Suthawaree Jeeranut 同上 大学院生 カゾン濃度測定 H16. 4-H17. 3 今川 宏介 東京都立大学工学部 学部学生 NOx 測定 H16. 4-H17. 3 後藤 優介 同上 学部学生 RO2 測定 H16. 4-H17. 3 田中 浩輔 同上 学部学生 炭化水素測定 H16. 4-H17. 3	今井	秀和	同上	大学院生	NO ₃ 測定	H15. 4-H17. 3
Suthawaree Jeeranut 同上 大学院生 おりご>濃度測定 H16. 4-H17. 3 今川 宏介 東京都立大学工学部 学部学生 NOx 測定 H16. 4-H17. 3 後藤 優介 同上 学部学生 RO2 測定 H16. 4-H17. 3 田中 浩輔 同上 学部学生 炭化水素測定 H16. 4-H17. 3	渡辺	敬祐	同上	大学院生	OH 寿命測定	H15. 4-H17. 3
今川 宏介 東京都立大学工学部 学部学生 NOx 測定 H16. 4-H17. 3 後藤 優介 同上 学部学生 RO2 測定 H16. 4-H17. 3 田中 浩輔 同上 学部学生 炭化水素測定 H16. 4-H17. 3	井手口	」 真澄	同上	大学院生	OVOC 測定	H16. 4-H17. 3
後藤 優介 同上 学部学生 RO2測定 H16.4-H17.3 田中 浩輔 同上 学部学生 炭化水素測定 H16.4-H17.3	Suthaw	aree Jeeranut	同上	大学院生	オゾン濃度測定	Н16. 4-Н17. 3
田中 浩輔 同上 学部学生 炭化水素測定 H16. 4-H17. 3	今川	宏介	東京都立大学工学部	学部学生	NOx 測定	H16. 4-H17. 3
	後藤	優介	同上	学部学生	RO ₂ 測定	H16. 4-H17. 3
宮本 和明 同上 学部学生 HOx ラジカル測定 H16. 4-H17. 3	田中	浩輔	同上	学部学生	炭化水素測定	H16. 4-H17. 3
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	宮本	和明	同上	学部学生	HOx ラジカル測定	Н16. 4-Н17. 3
矢田 英孝 同上 学部学生 炭化水素測定 H16. 4-H17. 3	矢田	英孝	同上	学部学生	炭化水素測定	H16. 4-H17. 3
亘理 真代 同上 学部学生 モデル計算 H16.10-H17.3	亘理	真代	同上	学部学生	モデル計算	H16.10-H17. 3

②大阪府大グループ

氏 名	氏 名 所 属		研究項目	参加時期
坂東 博	大阪府立大学大学院工学研究科	教授	研究とりまとめ	H11.11-H17. 3
竹中 規訓	同上	助教授	HONO 測定	H15. 4-H17. 3
前田 淳	同上	大学院生	窒素酸化物測定	H11.11-H12. 3
鈴江 崇彦	同上	大学院生	NO 測定高感度化	H11.11-H13. 3
福田 克彦	同上	大学院生	RO2ラジカル装置	H11.11-H13. 3
野間口 知基	同上	大学院生	RO ₂ ラジカル装置	H13. 4-H15. 3

陳	新瑜	同上	大学院生	NO2装置,NOy測定	H15. 4-H16. 3
小路	喜朗	同上	大学院生	HONO 測定	H15. 4-H16. 3
澤田	寛己	同上	大学院生	RO2ラジブカル装置	H13. 4-H17. 3
田中	健太	同上	大学院生	DOAS(NO2, HONO)	H15. 4-H17. 3

6. 研究期間中の主な活動

(1) ワークショップ・シンポジウム等無し

(2) 招聘した研究者等

氏 名(所属、役職)	招聘の目的	滞在先	滞在期間
James N. Pitts (カリフォルニア大学Riverside校、名誉教授)	大気化学セミナー及び シンポジウムの講演	東大先端研パープレスホテル	H12.10.26-10.29
Barbara J. Finlayson-Pitts (カリフォルニア大学Irvine校、教授)	大気化学セミナー及び シンポジウムの講演	東大先端研パープレスホテル	H12.10.26-10.29
Andrea Hochtzmahous (ユーリッヒ大気科学研究所、研究員)	大気化学セミナー	東大先端研東急ホテル	H13. 3.11- 3.13
Stan P. Sander (NASAジェット推進研究所、部長)	大気化学セミナー	東大先端研東急ホテル	H13. 3.11- 3.13
David G. Streets (アルゴンヌ国立研究所、上席研究官)	共同研究打ち合わせ	東大先端研都ホテル	H13. 9. 7- 9. 8

7. 主な研究成果物、発表等

(1) 口頭発表 (国内 90 件、海外 48 件)

(H12年) 2000年 (国内 12,海外 6) (国内)

- 1) 梶井克純、谷本浩志、加藤俊吾、P. Pakpong、廣川淳、秋元肇、D. Streets、N. Minko,「シベリアの森林火災における大気環境への負荷量の見積もり」, 第 10 回大気化学シンポジウム, 豊橋, 2000
- 2) 尾崎洋子、小尾欣一、ポチャナート・パクポン、加藤俊吾、廣川淳、梶井克純、秋元肇, 「シベリアの森林火災が大気組成に及ぼす影響-八方での一酸化炭素濃度変動による検討」,第 10 回大気 化学シンポジウム,豊橋, 2000

- 3) 松本淳、廣川淳、梶井克純、秋元肇,「レーザー誘起蛍光法を用いた海洋大気中 NO2 濃度の測定」, 日本化学会第78春季年会、船橋,2000
- 4) 加藤俊吾、谷本浩志、サルマ・ウシャ、梶井克純、秋元肇,「利尻島における非メタン炭化水素の測定」,日本化学会第78春季大会,船橋,2000
- 5) 松本淳、廣川淳、梶井克純、秋元肇,「レーザー誘起蛍光法による大気中 NO2 測定装置の開発と改良」, 第6回大気化学討論会,鳥羽,2000
- 6) 谷本浩志、松本淳、廣川淳、梶井克純、秋元肇,「利尻島における春季オゾン極大に関連する微量気体の挙動 (RISOTTO 2000) (1)オゾン・PAN・NOx の濃度変動と相互関係」, 第6回大気化学討論会,鳥羽,2000
- 7) 加藤俊吾、谷本浩志、梶井克純、秋元肇,「利尻島における春期オゾン極大に関連する微量気体の挙動(RISOTTO2000) (2)非メタン炭化水素の季節変化」,第6回大気化学討論会,鳥羽,2000
- 8) 谷本浩志、加藤俊吾、松本淳、廣川淳、梶井克純、駒崎雄一、田中茂、秋元肇,「利尻島における地表 O3・PAN の季節変化と O3 春季極大時の関連微量気体観測(RISOTTO 2000)」,第6回大気化学討論会, 鳥羽,2000
- 9) 松本淳、廣川淳、梶井克純、秋元肇,「レーザー誘起蛍光法による大気中 NO2 測定装置の開発」,第41回大気環境学会年会,浦和,2000
- 10) 加藤俊吾、梶井克純,「1999 年冬季の小笠原での非メタン炭化水素の測定-長距離輸送と塩素原子による酸化の影響-」,第41回大気環境学会年会,浦和,2000
- 11) 梶井克純、谷本浩志、加藤俊吾、P. Pakpong、廣川淳、秋元肇、尾崎洋子、小尾欣一、D. Streets、N. Minko,「シベリアの森林火災における大気環境への負荷量の見積もり」,日本気象学会 2000 年秋季大会,つくば,2000
- 12) 谷本浩志、梶井克純、廣川淳、秋元肇、ミンコ・ニコライ,「極東シベリアの森林火災が一酸化炭素の季節変化に与える影響:北海道利尻島における長期観測から」,第47回 日本地球化学会年会,山形,2000 (海外)
- 1) J. Matsumoto, J. Hirokawa, Y. Kajii, and H. Akimoto, "Development of high performance NO2-analyzer by laser-induced fluorescence technique", 7th Int. Conference on Atmosphere Sciences and Applications to Air Quality (ASAAQ), Taipei, September, 2000.
- 2) S. Kato, H. Tanimoto, H. Akimoto, Y. Kajii, "High CH3Cl concentration in the surface air: Production from subtropical lands", 7th Int. Conference on Atmosphere Sciences and Applications to Air Quality (ASAAQ), Taipei, September, 2000.
- 3) Y. Kajii, N. Minko, A. Shvidenko, M. Gluck, G. Carmichael, D. Jaffe, D. Streets, N. Tsai, "The Siberian Forest Fires of 1998: Extent, Emissions, and Effects on Air Quality in the Asia-Pacific Region", 7th Int. Conference on Atmosphere Sciences and Applications to Air Quality (ASAAQ), Taipei, September, 2000.
- 4) S. Kato, Y. Kajii, "Measurements of Nonmethane Hydrocarbons at Chichi-jima Island, a Remote Island in the Western Pacific: Evidence for Long Range Transport of Polluted Air from East Asian Rim Region and Estimation of Cl Concentration", AGU Fall Meeting, San Francisco, December, 2000.
- 5) Y. Kajii, S. Kato, P. Pochanart, Y. Ozaki, K. Obi, N. Minko, D. Streets, "Influence of Siberian forest fires on carbon monoxide concentration at Happo, Japan", AGU Fall Meeting, San Francisco, December, 2000.
- 6) M. Uematsu, K. Ohta, M Masakawa, H. Kamiya, A. Matsuba, Y. Kajii, "Impact of Forest Fire in Far Eastern Siberia to the Marine Atmosphere over the Northwest North Pacific in the Spring of 2000", AGU Fall Meeting, San Francisco, December, 2000.

- (H13年) 2001年 (国内13,海外9) (国内)
- 1) 加藤俊吾、秋元肇、梶井克純,「陸上沿岸地域からの高濃度塩化メチルの生成」,日本化学会第79春季大会,神戸,2001
- 2) 梶井克純、松本淳,「LIF 法による NOx の超高感度計測」,光化学討論会,金沢,2001
- 3) 松本淳、梶井克純,「レーザー誘起蛍光法による清浄大気中 NO2 の測定」, 第7回大気化学討論会, 大津, 2001
- 4) 廣川淳、糸数龍之介、幸田清一郎、加藤俊吾、梶井克純、金谷有剛、秋元肇,「化学イオン化質量分析計を用いた対流圏塩素・臭素濃度測定装置の開発と沖縄における観測」, 第7回大気化学討論会,大津,2001
- 5) 松本淳、田中茂、梶井克純,「レーザー誘起蛍光法による清浄大気中 NO2 の測定」, 第 42 回大気環境学会年会,北九州,2001
- 6) 加藤俊吾、梶井克純、糸数龍之介、廣川淳、幸田清一郎、秋元肇、金城義勝,「冬季沖縄における一酸化炭素・オゾンおよび炭化水素濃度の測定-大陸からの長距離輸送の検討-」第 42 回大気環境学会年会,北九州,2001
- 7) 加藤俊吾、松本淳、梶井克純、「みらい MR01-K02 航海での大気ガス成分の測定」,日本気象学会 2001 年秋季大会,岐阜,2001
- 8) 加藤俊吾、谷本浩志、秋元肇、梶井克純,「2000 年利尻集中観測でのハイドロカーボンの測定」,第 11 回大気化学シンポジウム,豊橋,2001
- 9) 糸数龍之介、廣川淳、幸田清一郎、梶井克純、秋元肇,「化学イオン化質量分析計を用いた対流圏無機ハロゲン測定装置の開発」,質量分析総合討論会,東京,2001
- 10) 梶井克純,「人為起源・生物起源反応性気体の海洋上での観測」, 東大海洋研シンポジウム SOLAS プロジェクト, 東京, 2001
- 11) 加藤俊吾、ポチャナート・パクポン、秋元肇、梶井克純、「タイでの炭化水素の測定」、第 12 回大気化学シンポジウム、豊橋、2001
- 12) 松本淳、梶井克純,「海洋大気中の NO/NO2 光化学定常状態の検討」, 第 12 回大気化学シンポジウム, 豊橋, 2001
- 13) 三浦和彦、児島紘、植松光夫、加藤俊吾、梶井克純,「大気エアロゾルの粒径別平均寿命」, 第 12 回大気化学シンポジウム, 豊橋, 2001 (海外)
- 1) Y. Kajii , "HOx and NOx Radicals Chemistry in the Troposphere", International Workshop for Atmospheric Chemistry, Kyoto, 2001.
- 2) S. Kato, H. Tanimoto, Y. Kajii, H. Akimoto, "Seasonal Variations of Non-methane hydrocarbons at Rishiri Island, A northernmost Island in Japan during the RISOTTO 1999-2000", 8th Scientific Assembly of International Association of Meteorology and Atmospheric Sciences (IAMAS), Innsbruck, Austria, 2001.
- 3) Y. Kajii, "HOx and NOx Radicals Chemistry in the Troposphere", Int. Workshop on NOx/NOy in Troposphere and Stratosphere, Heidelberg, Germany, 2001.
- 4) J. Matsumoto, Y. Kajii, "Development of NO2 Analyzer by LIF Technique and NOx Chemistry in Remote Area", Global Change Open Science Conference, Amsterdam, Holland, 2001.
- 5) Y. Kajii, J. Matsumoto, "Development of High Performance NOx analyzer and Some Field Results Conducted under Maritime Condition", 10th APARE meeting, Xining, China, 2001.

- 6) J. Hirokawa, R. Itokazu, M.Sugiyama, S. Koda, Y. Kajii, and H. Akimoto, "Improvement of the Chemical Ionization Mass Spectrometer for Measurements of Halogen Molecules in the Troposphere", Symposium on Atmospheric Composition Change-Toward the Integration of Observation and Modeling-, Yokohama, 2001.
- 7) Boreal Forest Fires in Siberia in 1998: Estimation of Area Burned and Estimations of Pollutants by AVHRR Satellite Data, Y. Kajii, Symposium on Atmospheric Composition Change-Toward the Integration of Observation and Modeling-, Yokohama, 2001.
- 8) S. Kato, J. Matsumoto, Y. Kajii, "Gas measurements on western Pacific in Mirai MR01-K02 Cruise", AGU Fall Meeting, San Francisco, December, 2001.
- 9) Y. Kajii, J. Matsumoto, "Measurements of NO2 in Maritime Atmosphere in Japan by Laser-Induced Fluorescence Technique", AGU Fall Meeting, San Francisco, December, 2001.

(H14年) 2002年 (国内 9,海外 10) (国内)

- 1) 松本淳、梶井克純,「レーザー誘起蛍光法による海洋大気中 NO2 の高感度測定」,日本化学会第81春季年会,早稲田,2002年3月
- 2) 加藤俊吾、梶井克純、松見豊,「北海道母子里でのオゾン・一酸化炭素および炭化水素の測定」,日本化学会第81春季大会、早稲田,2002年3月
- 3) 梶井克純、加藤俊吾、糸数龍之介、廣川淳、幸田清一郎、金城義勝,「冬季沖縄における大気反応性 化学種の測定:アジアからの汚染物質の長距離輸送」,日本化学会第81春季大会,早稲田,2002年3月
- 4) 加藤俊吾、梶井克純、松見豊、「北海道母子里での一酸化炭素・炭化水素の連続地上測定と季節変化」, 第8回大気化学討論会,北海道,2002年6月
- 5) 梶井克純、加藤俊吾、松本淳、定永靖宗、坂東博、竹中規訓、佐藤啓市、野間口知基、澤田寛己、村 上寛法、亀田貴之、寺田英敏、田中茂、駒崎雄一、山本王利,「大阪における都市大気の総合観測」,第 8回大気化学討論会,北海道,2002年6月
- 6) 松本淳、定永靖宗、加藤俊吾、坂東博、梶井克純,「大阪における都市大気の総合観測(Ⅲ): NOx の測定と光化学の検討」,第8回大気化学討論会,北海道,2002年6月
- 7) 定永靖宗、野間口知基、坂東博、松本淳、梶井克純,「化学増幅法を用いた RO2 測定装置の感度の 湿度依存性」, 第 8 回大気化学討論会, 北海道, 2002 年 6 月
- 8) 加藤俊吾、梶井克純、「東京都心部における冬季都市大気の測定」,第43回大気環境学会年会,府中,2002年9月
- 9) 松本淳、定永靖宗、加藤俊吾、坂東博、梶井克純,「都市大気における NOx の測定と光化学の検討」, 第 43 回大気環境学会年会, 2002 年 9 月 (海外)
- 1) Y. Kajii, S. Kato, D. G. Streets, A. Shvidenko, N. P. Minko, T. V. Khodzer, "Boreal Forest Fires in Siberia in 1998: Estimation of Area Burned and Emissions of Pollutants by AVHRR Satellite Data", Improving Global Estimates of Atmospheric Emissions from Biomass Burning, Maryland, USA, July, 2002
- 2) S. Kato, Y. Kajii, R. Itokazu J. Hirokawa, S. Koda, Y. Kinjo, "Winter rime observations of atmospheric species at southern Japanese islands: Transport of pollutants from east Asian countries to western Pacific", 7th Scientific Conference of the International Global Atmospheric Chemistry Project (IGAC), Crete, September, 2002
- 3) Y. Kajii, S. Kato, D. G. Streets, N. Y. Tsai, A. Shvidenko, S. Nilsson, I. McCallum, N. P. Minko, N. Abushenko, Dmitry Altyntsev, Tamara V. KHODZER, "Boreal Forest Fires in Siberia in 1998: Estimation of Area Burned and Emissions of Pollutants by AVHRR Satellite Data", 7th Scientific Conference of the International Global Atmospheric Chemistry Project (IGAC), Crete, September, 2002
- 4) K. Miura, H. Kojima, M. Uematasu, I. Uno, N. Sugimoto, S. Kato, "Physical Properties of Marine Aerosols Measured on the R/V Mirai During ACE-Asia", 7th Scientific Conference of the International Global Atmospheric

- 5) Y. Kanaya, Y. Yokouchi, K. Nakamura, H. Tanimoto, J. Matsumoto, S. Kato, H. Furutani, Y. Kajii, T. Inoue, S. Hashimoto, Y. Komazaki, S. Tanaka, K. Toyota, H. Akimoto, "Impact of iodine chemistry on mixing ratios of OH, HO2, H2O2, ozone, and oxygenated species and NO/NO2 ratios at Rishiri Island, Japan", 7th Scientific Conference of the International Global Atmospheric Chemistry Project (IGAC), Crete, September, 2002
- 6) H. Tanimoto, S. Kato, H. Akimoto, H. Yamano, "Ground-based observations of PAN, PPN, and APAN at Rishiri Island in northern Japan", 7th Scientific Conference of the International Global Atmospheric Chemistry Project (IGAC), Crete, September, 2002
- 7) S. Kato, Y. Matsumi, Y. Kajii, "Continuous measurement of atmospheric pollutants at Moshiri, Northern Japan: Influence of anthropogenic activity and Siberia forest fire", 3rd International Workshop on Global Change: Connection to the Arctic 2002 (GCCA3), Alaska, November, 2002
- 8) S. Kato, T. Ui, M. Uematsu, Y. Kajii, "Measurements of atmospheric trace gases over NW Pacific during IOC 2002 cruise- Pollutants transported from east Asia and biogenic species emitted from ocean", AGU Fall Meeting, San Francisco, December, 2002
- 9) J. Matsumoto, N. Kosugi, Y. Sadanaga, S. Kato, T Nomaguchi, H Sawada, H Bandow, Y Kaji, "Photostationary-state of NOx in the Urban Atmosphere in Japan", AGU Fall Meeting, San Francisco, December, 2002
- 10) Y. Sadanaga, J. Matsumoto, K. Sakurai, S. KATO, T. Nomaguchi, H. Bandow, Y. Kajii, "Measurement of peroxy radicals in the urban atmosphere by PERCA-LIF technique", AGU Fall Meeting, San Francisco, December, 2002.

(H15年) 2003年 (国内 16,海外 10) (国内)

- 1) 松本淳、小杉如央、梶井克純,「レーザー誘起蛍光法による大気中 NO3 測定装置の開発」, 第 13 回大 気化学シンポジウム, 豊川, 2003 年 1 月
- 2) 加藤俊吾、梶井克純,「PTR-MS による東京郊外での大気測定」,第 13 回大気化学シンポジウム,豊川,2003 年 1 月
- 3) 加藤俊吾、宇井剛史、植松光夫、梶井克純,「2002 年 IOC 研究航海による気体太平洋上の大気成分測定」,第13回大気化学シンポジウム,豊川,2003年1月
- 4) 松本淳、定永靖宗、加藤俊吾、野間口知基、澤田寛己、竹中規訓、坂東博、小杉如央、桜井健一、梶井克純,「都市大気における NO-NO2 交換反応の検討」, 第 13 回大気化学シンポジウム, 豊川, 2003 年 1 月
- 5) 升井幸男、小池真、近藤豊、松見豊、P.I. Palmer、N.B. Jacob、中根英昭、村田功、梶井克純、加藤俊吾、瀬良正幸,「FTIR によって観測された対流圏一酸化炭素の季節変化-母子里, 陸別, つくばにおける観測と3次元モデルとの比較-」,第13回大気化学シンポジウム,豊川,2003年1月
- 6) 定永靖宗、松本淳、桜井健一、加藤俊吾、野間口知基、竹中規訓、坂東博、梶井克純,「PERCA-LIF を用いた対流圏 RO2 ラジカル測定装置のカスタマイズ及び大阪における都市大気観測」,第13回大気化学シンポジウム,豊川,2003年1月
- 7) 加藤俊吾、梶井克純、松見豊、宮脇淳子、鈴木勝久、「北海道母子里における地上観測とカラム量の比較」、日本化学会第83春季大会、早稲田、2003年3月
- 8) 定永靖宗、松本淳、桜井健一、加藤俊吾、野間口知基、竹中規訓、坂東博、梶井克純,「化学増幅ーレーザー誘起蛍光法を用いた対流圏 RO2 ラジカル測定装置の開発」,日本化学会第83春季大会,早稲田,2003年3月
- 9) 松本淳、小杉如央、定永靖宗、加藤俊吾、野間口知基、澤田寛己、竹中規訓、坂東博、梶井克純,「都

- 市大気における NOx 光化学定常状態の検討」, 日本化学会第83春季大会, 早稲田, 2003年3月
- 10) 小杉如央、松本淳、梶井克純、「LIF 法を用いた大気中 NO3 測定装置の開発」, 日本化学会 第83 春季年会,早稲田,2003 年3月
- 11) 加藤俊吾、定永靖宗、松本淳、梶井克純,「みらい MR03K01 航海での太平洋北西部における大気観測-速報-」,第9回大気化学討論会,伊香保,2003年5月
- 12) 永尾一平、加藤俊吾、大木淳之、梶井克純、植松光夫、田中浩,「春季の西部北太平洋における DMS とその関連物質の分布」, 第9回大気化学討論会, 伊香保, 2003年5月
- 13) 定永靖宗、若園陽子、梶井克純,「対流圏 OH ラジカル濃度及び大気寿命測定装置の開発」,第 8 回 大気化学討論会,伊香保,2003年5月
- 14) 加藤俊吾、金子達也、宮川祐子、梶井克純、「陽子移動反応質量分析器(PTR-MS)の特性と都市大気 観測」、第44回大気環境学会、京都、2003年9月
- 15) 松本淳、定永靖宗、加藤俊吾、竹中規訓、坂東博、梶井克純,「都市大気における NO-NO2 光化学 定常状態」,第44回大気環境学会,京都,2003年9月
- 16) 谷晃、鬼池政宏、加藤俊吾、梶井克純,「陽子移動反応質量分析計を用いた植物のイソプレン放出速度の測定」,第44回大気環境学会,京都,2003年9月 (海外)
- 1) S. Kato, Y. Kajii, "Urban air measurement in Tokyo area using PTR-MS and comparison with GC-FID", 1st International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications, Innsbruck, January, 2003
- 2) J. Matsumoto, I. Kosugi, Y. Sadanaga, S. Kato, Y. Kajii, "Validation of the photostationary-state of NOx in the urban atmosphere in Japan", EGS-AGU-EUG Joint Assembly 2003, Nice, France, April 2003,
- 3) S. Kato, Y. Kajii, T. Ui, M. Uematsu, "Atmospheric Trace Gas Measurements Over NW Pacific" IUGG2003, Sapporo, July, 2003
- 4) Y. Kajii, Y. Sadanaga, S. Kato, J. Matsumoto, H. Bandow, "Test of the NOx-O3-JNO2 Photostationary State in Urban Air", 2003 GRC on Atmospheric Chemistry, Big Sky, USA, September, 2003
- 5) J. Matsumoto, H. Imai, N. Kosugi, Y. Kajii, "In-situ measurement of atmospheric NO3 and N2O5 by laser-induced fluorescence technique", Colloquium lecture at NOAA Aeronomy Laboratory, Boulder, USA, November 2003
- 6) S. Kato, J. Matsumoto, Y. Sadanaga, Y. Kajii, "Atmospheric trace gas measurements by PTR-MS over western Pacific during late winter in 2003 (MR03K01 cruise)", AGU Fall Meeting, San Francisco, December, 2003
- 7) Y. Sadanaga, A. Yoshino, S. Kato, J. Matsumoto, Y. Yakazono, I. Hayashi, M. Ichikawa, A. Nishiyama, N. Akiyama, Y. Kanaya, Y. Kajii, "Measurement of total OH reactivity in the urban atmosphere by Chemical Perturbation using a Laser-Induced Fluorescence technique", AGU Fall Meeting, San Francisco, December, 2003
- 8) Y. Miyakawa, S. Kato, I. Hayashi, Y. Kajii, "Test of practical utilization of PTR-MS and observation of the urban air in Tokyo during summer time", AGU Fall Meeting, San Francisco, December, 2003
- 9) Y. Kajii, A. Yoshino, S. Kato, J. Matsumoto, Y. Sadanaga, "Direct Detection of OH reactivity in the Urban Atmosphere by Laser Induced Pump and Probe Technique", AGU Fall Meeting, San Francisco, December, 2003
- 10) J. Matsumoto, H. Imai, N. Kosugi, Y. Kajii, "In-situ measurement of atmospheric NO3 radical by laser-induced fluorescence technique", AGU Fall Meeting, San Francisco, December, 2003

(H16年) 2004年 (国内 25, 海外 12) (国内)

1) 松本淳、今井秀和、小杉如央、梶井克純、「レーザー誘起蛍光法による大気中 NO3 / N2O5 測定装置の改良」、第 14 回大気化学シンポジウム、豊川、2004 年 1 月

- 2) 小杉如央、松本淳、今井秀和、梶井克純,「レーザー誘起蛍光法による大気中 NO3/N2O5 測定装置の校正法」,第14回 大気化学シンポジウム,豊川,2004年1月
- 3) 渡邉敬祐、定永靖宗、吉野彩子、吉岡篤史、若園陽子、金谷有剛、梶井克純,「化学摂動法を用いた OH ラジカル大気寿命測定装置の開発」,第14回 大気化学シンポジウム,豊川,2004年1月
- 4) 西山綾香、磯崎涼子、吉野彩子、松本淳、定永靖宗、加藤俊吾、宮川祐子、佐藤啓市、金谷有剛、梶井克純,「2003 年夏季における都市大気中 NOx-O3-RO2 光化学定常状態の検討」,第14回大気化学シンポジウム、豊川、2004年1月
- 5) 加藤俊吾、林一郎、宮川祐子、梶井克純,「2003 年秋季利尻集中観測: GC-FID および GC-MS による VOC の測定」, 第 14 回大気化学シンポジウム, 豊川, 2004 年 1 月
- 6) 定永靖宗、吉野彩子、吉岡篤史、渡邉敬祐、若園陽子、加藤俊吾、宮川祐子、林一郎、市川雅子、松本淳、西山綾香、秋山成樹、金谷有剛、梶井克純,「化学増幅法を用いた OH ラジカル大気寿命測定」,第14回大気化学シンポジウム,豊川,2004年1月
- 7) 磯崎涼子、定永靖宗、松本淳、西山綾香、加藤俊吾、宮川祐子、佐藤啓一、谷本浩志、金谷有剛、梶井克純,「2003 年秋季利尻集中観測:ペルオキチラジカル濃度測定」,第 14 回大気化学シンポジウム,豊川,2004 年 1 月
- 8) 金谷有剛、曹仁秋、秋元肇、谷本浩志、佐藤啓一、Bin Qi、横内陽子、磯崎涼子、宮川祐子、西山綾香、林一郎、定永靖宗、松本淳、加藤俊吾、梶井克純、奥田知明、加藤潤、森淳哉、天目真樹、里泰志、横地玲、田中茂、駒崎雄一、持田陸宏、河村公隆,「2003 年秋季利尻集中観測: 概要と初期成果」,第14回大気化学シンポジウム、豊川、2004年1月
- 9) 宮川祐子、加藤俊吾、梶井克純, 「2003 年秋季利尻集中観測: PTR-MS による OVOC の測定」, 第 14 回大気化学シンポジウム, 豊川, 2004 年 1 月
- 10) 金谷有剛、谷本浩志、佐藤啓一、磯崎涼子、宮川祐子、西山綾香、定永靖宗、松本淳、加藤俊吾、梶井克純,「2003 年秋季利尻集中観測: NOx-O3-RO2 光化学定常状態の検討」, 第 14 回大気化学シンポジウム,豊川,2004 年 1 月
- 11) 吉野彩子、定永靖宗、吉岡篤史、渡邉敬祐、加藤俊吾、宮川祐子、林一郎、市川雅子、松本淳、西山綾香、秋山成樹、梶井克純,「2003 年夏季における都市大気中 OH ラジカル寿命測定」, 第 14 回大気化学シンポジウム,豊川, 2004 年 1 月
- 12) 小池真、土井準、近藤豊、松見豊、中根英昭、村田功、梶井克純、加藤俊吾,「FTIR によって観測された対流圏一酸化炭素の季節変化とその要因」,第14回大気化学シンポジウム,豊川,2004年1月
- 13) 加藤俊吾、松本淳、定永靖宗、梶井克純,「太平洋西部における大気中微量成分の測定」, 第7回みらいシンポジウム, 横浜, 2004年1月
- 14) 三浦和彦、岡田誠、児島紘、加藤俊吾、中村篤博、植松光夫,「MR03-K01 航海における海洋大気エアロゾルの測定」,第7回みらいシンポジウム,横浜,2004年1月
- 15) 梶井克純、吉野彩子、加藤俊吾、松本淳、定永靖宗,「都市大気中の OH ラジカルの反応性の測定」, 日本化学会第84回春季大会,大阪,2004年3月
- 16) 加藤俊吾、市川雅子、梶井克純,「都市大気の海洋上での影響~大島におけるテスト観測~」, 第 10 回大気化学討論会, 駒場, 2004 年 6 月
- 17) 金谷有剛、曹仁秋、秋元肇、谷本浩志、横内陽子、定永靖宗、宮川祐子、加藤俊吾、 梶井克純,「2003 年 9 月利尻集中観測における OH/HO2 ラジカル濃度の挙動: 日中の HO2 実測濃度が低 い理由」,第 10 回大気化学討論会,駒場,2004 年 6 月
- 18) 吉野彩子、定永靖宗、吉岡篤史、渡邊敬祐、加藤俊吾、宮川祐子、市川雅子、林一郎、松本淳、西

- 山綾香、秋山成樹、梶井克純,「東京郊外における大気中 OH ラジカル寿命観測」, 第 10 回大気化学討論会, 駒場, 2004 年 6 月
- 19) 宮川祐子、加藤俊吾、梶井克純、「OVOCs 測定時の PTR-MS のキャリブレーション」,第 10 回大気 化学討論会,駒場,2004 年 6 月
- 20) 磯崎涼子、定永靖宗、松本淳、西山綾香、宮川祐子、後藤優介、吉岡篤史、加藤俊吾、坂東博、梶井克純,「化学増幅-レーザー誘起蛍光法を用いた都市大気中ペルオキシラジカル濃度の測定及び、オゾン生成速度の検討」、第45回大気環境学会年会、秋田、2004年10月
- 21) 吉野彩子、定永靖宗、渡邊敬祐、吉岡篤史、加藤俊吾、宮川祐子、松本淳、西山綾香、秋山成樹、梶井克純,「都市大気における OH ラジカル寿命季節変動」,第 45 回大気環境学会年会,秋田,2004 年10 月
- 22) 加藤俊吾、市川雅子、梶井克純,「都立大でのオゾンおよび前駆体物質濃度変動についての考察」, 第 45 回大気環境学会年会,秋田,2004年 10 月
- 23) 宮川祐子、加藤俊吾、梶井克純、「陽子移動反応質量分析装置(PTR-MS)による都市大気中の含酸素揮発性有機化合物(OVOC)の測定」、第45回大気環境学会年会、秋田、2004年10月
- 24) 西山綾香、秋山成樹、磯崎涼子、定永靖宗、加藤俊吾、松本淳、梶井克純,「都市大気における NOx -O3-RO2 光化学定常状態の検証」, 第 45 回大気環境学会年会, 秋田, 2004 年 10 月
- 25) 小杉如央、今井秀和、松本淳、梶井克純,「レーザー誘起蛍光法による大気中 NO3-N2O5 測定装置の開発と大気中 N2O5 の測定」,第 45 回大気環境学会年会,秋田,2004 年 10 月 (海外)
- 1) Y. Kanaya, R. Cao, H. Tanimoto, Y. Miyakawa, S. Kato, Y. Kajii, H. Akimoto, "Strong positive correlation between mixing ratios of HOx radical and monoterpenes during nighttime observed at Rishiri island in September 2003", European Geoscience Union, Spring meeting, Nies, April, 2004
- 2) Y. Kajii, A. Yoshino, S. Kato, J. Matsumoto, Y. Sadanaga, "Direct detection of OH reactivity in the urban atmosphere by Laser induced pump and probe technique", The 5th international symposium on advanced environmental monitoring, Seoul, April, 2004
- 3) J. Matsumoto, H. Imai, N. Kosugi, Y. Kajii, "A new analyzer for measuring atmospheric NO3/N2O5 by laser-induced fluorescence technique", The 5th international symposium on Advanced Environment Monitoring, Seoul, April, 2004
- 4) J. Matsumoto, H. Imai, N. Kosugi, Y.Kajii, "Calibration of NO3/N2O5 analyzer with laser-induced fluorescence technique", The 5th international symposium on Advanced Environment Monitoring, Seoul, April, 2004
- 5) Y. Kanaya, R. Cao, Y. Yokouchi, H. Tanimoto, S. Kato, Y. Miyakawa, Y. Sadanaga, Y. Kajii, H. Akimoto, "Daytime behavior of OH and HO2 radicals at Rishiri island in September 2003: Reasons for the low HO2 levels", 8th international global atmospheric chemistry conference, New Zealand, September, 2004
- 6) I. Nagao, S. Kato, Y. Uyama, A. Ohki, Y. Kajii, M. Uematsu, "Spring time distributions of DMS and related species in the surface seawater and atmosphere over the western north Pacific", 8th international global atmospheric chemistry conference, New Zealand, September, 2004
- 7) Y. Kajii, A. Yoshino, K. Watanabe, S. Kato, J. Matsumoto, Y. Sadanaga, "Direct OH decay rate measurement in the sub urban air by a laser induced pump and probe technique", 8th international global atmospheric chemistry conference, New Zealand, September, 2004
- 8) A. Yoshino, Y. Sadanaga, S. Kato, Y. Miyakawa, I. Hayashi, M. Ichikawa, J. Matsumoto, A. Nishiyama, N. Akiyama, Y. Kajii, "Measurement of total OH reactivity in Tokyo in the summer of 2003 and the winter of 2004", 8th international global atmospheric chemistry, New Zealand, September, 2004
- 9) J. Matsumoto, H. Imai, N. Kosugi, Y.Kajii, "N2O5 as a nocturnal sink of NOx in the suburban atmosphere", The 8th international global atmospheric chemistry conference (IGAC), New Zealand, September, 2004

- 10) Y. Kajii, "Measurment of OH reactivity in urban atmosphere", HOxCOMP workshop, Juelich, September, 2004
- 11) Y. Kajii, H. Imai, N. Kosugi, J. Matsumoto, S. Kato, "Observation of nocturnal NO3 and N2O5 in the urban atmosphere by laser-induced fluorescence", AGU Fall Meeting, San Francisco, December, 2004
- 12) S. Matsunaga, C. Wiedinmyer, S. Kato, A. Yoshino, Y. Miyakawa, J. Greenberg, Y. Kajii, A. Guenther, "Sources of Biogenic and Anthropogenic Semi Volatile Organic Carbonyls and Their Effects on the Air Quality in Suburban and Remote Area", AGU Fall Meeting, San Francisco, December, 2004

(H17年) 2005年 (国内 15,海外 1) (国内)

- 1) 松本淳、小杉如央、今井秀和、今川宏介、西山綾香、宮川祐子、井手口真澄、加藤俊吾、梶井克純, 「夜間大気中 N2O5 の観測研究-NOx 消失にたいする影響評価」,第15回大気化学シンポジウム,豊川, 2005 年1月
- 2) 松永壮、Christine Wiedinmyer, John Orland, Alex Guenther, Thomas Karl, Jim Greenberg, 梶井克純,「イソプレン分解生成物のエアロゾル生成としての寄与:観測と計算」,第 15 回 大気化学シンポジウム,豊川,2005年1月
- 3) 加藤俊吾、亘理真代、梶井克純、植松光男、永尾一平,「SEEDⅡ鉄散布航海での大気中微量気体成分の測定」,第15回大気化学シンポジウム,豊川,2005年1月
- 4) 吉野彩子、定永靖宗、渡邊敬祐、加藤俊吾、宮川祐子、松本淳、西山綾香、秋山成樹、梶井克純,「OH ラジカル寿命観測による都市大気質の診断」,第15回大気化学シンポジウム,豊川,2005年1月
- 5) 吉岡篤史、宮本和明、定永靖宗、加藤俊吾、梶井克純,「LIF 法を用いた大気中 HO x ラジカル濃度測定装置の開発および実大気測定への応用」、第15回大気化学シンポジウム、豊川、2005年1月
- 6) 松永壮、加藤俊吾、吉野彩子、梶井克純, Jim Greenberg, Alex Guenther, 「大気中揮発性化合物のガスーエアロゾル分配」, 第15回大気化学シンポジウム, 豊川, 2005年1月
- 7) 加藤俊吾、宮川祐子、井手口真澄、梶井克純、中村恵、塩川善郎,「IAMS(イオン付着質量分析計)と PTRMS(陽子移動反応質量分析計)の性能比較実験」, 日本化学会第84回春季大会, 横浜, 2005年3月
- 8) 今井秀和、小杉如央、松本淳、今川宏介、井手口真澄、宮川祐子、加藤俊吾、梶井克純, 「都市大気における夜間 NO3/N2O5 の観測研究」, 日本化学会第84 回春季大会, 横浜, 2005 年3月
- 9) 井手口真澄、宮川祐子、松本淳、加藤俊吾、梶井克純,「伊豆大島での陽子移動反応質量分析装置 (PTR-MS)による大気中揮発性有機化合物(VOC)の測定」,日本化学会第84回春季大会,横浜,2005年3月
- 10) 渡邉敬祐、吉野彩子、加藤俊吾、松本淳、定永靖宗、梶井克純,「大気中 OH ラジカルの寿命測定 装置の開発および都市大気中 OH ラジカル寿命測定」,日本化学会第84回春季大会,横浜,2005年3月
- 11) ジーラナット・スッタワーリー、加藤俊吾、梶井克純、高見昭憲、畠山史郎、渡具知美希子、与儀和夫,「沖縄への汚染大気の長距離輸送:一酸化炭素とオゾンの季節変化」,日本化学会第84回春季大会,横浜,2005年3月
- 12) 秋山成樹、西山綾香、松本淳、梶井克純,「レーザー誘起蛍光法を用いた汎用型高精度大気中 NO2 濃度測定装置の開発」,日本化学会第84回春季大会,横浜,2005年3月
- 13) 宮本和明、吉岡篤史、定永靖宗、加藤俊吾、梶井克純,「レーザー誘起蛍光法による対流圏 HOx ラジカル測定装置の改良」, 日本化学会第84回春季大会, 横浜, 2005年3月
- 14) 今川宏介、西山綾香、松本淳、加藤俊吾、梶井克純,「LED による NO2 測定用光分解セルの開発」,

日本化学会第84回春季大会,横浜,2005年3月

- 15) 松本淳、小杉如央、今井秀和、今川宏介、西山綾香、宮川祐子、井手口真澄、加藤俊吾、梶井克純, 「海洋大気における夜間 NO3/N2O5 の観測研究」, 日本化学会第84回春季大会, 横浜, 2005年3月 (海外)
- 1) S. Kato, Y. Miyakawa, Y. Kajii, "Calibration of PTR-MS for OVOCs", 2nd International Conference on PTR-MS and its applications, Obergurgl, Austria January, 2005
 - (2) 論文発表 (国内 6 件、海外 27 件)

2000年

(海外)

1) H. Tanimoto, Y. Kajii, J. Hirokawa, H. Akimoto, N. Minko, "The atmospheric impact of boreal forest fires in far eastern Siberia on the seasonal variation of carbon monoxide: Observations at Rishiri, a remote island in Japan", *Geophys. Res. Lett.*, 27, 4073-4076 (2000).

2001年

(海外)

- 1) S. Kato, P. Pochanart, Y. Kajii, "Measurements of ozone and nonmethane hydrocarbons at Chichijima island, a remote island in western Pacific: Long-range transport of polluted air from the Pacific rim region", *Atmos. Environ.*, 35, 6021-6029 (2001).
- 2) J. Matsumoto, J. Hirokawa, H. Akimoto, Y. Kajii, "Direct Measurement of NO2 in the Marine Atmosphere by Laser Induced Fluoresecence Technique", *Atmos. Environ.*, 35, 2803-2814 (2001).

2002年

(海外)

- 1) S. Kato, P. Pakpong, J. Hirokawa, Y. Kajii, Hajime Akimoto, Yoko Ozaki, Kinichi Obi, Takao Katsuno, David G. Streets, Nikolay P. Minko, "The influence of Siberian forest fires on Carbon Monoxide concentration at Happo, Japan", *Atmos. Environ.*, 36, 385-390 (2002).
- 2) Y. Kajii, S. Kato, D. G. Streets, N. Y. Tsai, A. Shvidenko, S. Nilsson, N. P. Minko, N. Abushenko, D. Altyntsev, T. V. Khodzer, "Boreal Forest Fires in Siberia in 1998: Estimation of Area and Emissions of Pollutants by AVHRR Satellite Data", *J. Geophys. Res.*, 107(D24), 4745, doi:10.1029/2001JD001078 (2002).
- 3) Y. Kanaya, Y. Yokouchi, J. Matsumoto, K. Nakamura, S. Kato, H. Tanimoto, H. Furutani, K. Toyota, and H. Akimoto, "Implications of iodine chemistry for daytime HO2 levels at Rishiri Island", *Geophys. Res. Lett.*, 29, 1212 (2002).
- 4) H. Tanimoto, H. Furutani, S. Kato, J. Matsumoto, Y. Makide and H. Akimoto, "Seasonal cycles of ozone and oxidized nitrogen species in northeast Asia 1. Impact of regional climatology and photochemistry observed during RISOTTO 1999-2000", *J. Geophys. Res.*, 107, 4747 (2002).
- 5) H. Tanimoto, O. Wild, S. Kato, H. Furutani, Y. Makide, Y. Komazaki, S. Hashimoto, S. Hashimoto, H. Akimoto, "Seasonal cycles of ozone and oxidized nitrogen species in northeast Asia 2. A model analysis of the roles of chemistry and transport", *J. Geophys. Res.*, 107, D23, 4706, 10.1029/2001JD001497, (2002).
- 6) Y. Kanaya, K. Nakamura, S. Kato, J. Matsumoto, H. Tanimoto, H. Akimoto, "Nighttime variations in HO₂ radical mixing ratios at Rishiri Island observed with elevated monoterpene mixing ratios", *Atmos. Environ.*, 36, 4929-4940, (2002).

2003年

(海外)

- 1) Y. Sadanaga, J. Matsumoto, Y. Kajii, "Photochemical reactions in the urban air: Recent understandings of radical chemistry", *J. Photochem. Photobiol. C: Photochemistry Reviews*, 4, 85-104 (2003).
- 2) Y. Kanaya, Y. Kajii, H. Akimoto, "Solar actinic flux and photolysis frequency determinations by radiometers and a radiative transfer model at Rishiri Island: comparisons, cloud effects, and detection of an aerosol plume from Russian forest fires", *Atmos. Environ.*, 37, 2463-2475 (2003).

- 3) J. Matsumoto, Y. Kajii, "Improved analyzer for nitrogen dioxide by laser-induced fluorescence technique", *Atmos. Environ.*, 37, 4847-4851 (2003).
- 4) K. Nakamura, Y. Kondo, G. Chen, J. H. Crawford, N. Takegawa, M. Koike, K. Kita, Y. Miyazaki, R. E. Shetter, B.L. Lefer, M. Avery, and J. Matsumoto, "Measurement of NO2 by Photolysis Conversion Technique During TRACE-P", *J. Geophys. Res.*, 108, 4752 (2003).
- 5) F. J. G. Laurier, R. P. Mason, L. Whalin, S. Kato, "Reactive gaseous mercury formation in the North Pacific Ocean's marine boundary layer: A potential role of halogen chemistry", *J. Geophys. Res.*, 108, D17, 4529, 10.1029/2003JD003625 (2003).

2004年

(国内)

- 1) 三浦和彦、新村典子、児島紘、加藤俊吾、杉本伸夫、松井一郎、清水厚、鵜野伊津志、 植松光夫,「「みらい」航海におけるエアロゾルの物理的特性」, エアロゾル研究, Vol.19, No.2, 108-116 (2004).
- 2) 加藤俊吾、梶井克純,「陽子移動反応質量分析器による揮発性有機化合物の検出」, *真空*, Vol.47, No.8, 600-605 (2004).

(海外)

- 1) Y. Sadanaga, J. Matsumoto, K. Sakurai, R. Isozaki, S. Kato, T. Nomaguchi, H. Bandow, Y. Kajii, "Development of a measurement system of peroxy radicals using a chemical amplification/laser-induced fluorescence technique", *Rev. Sci. Instrum.*, 75, 864-872 (2004).
- 2) Y.Sadanaga, A. Yoshino, S. Kato, A. Yoshioka, K. Watanabe, Y. Miyakawa, I. Hayashi, M. Ichikawa, J. Matsumoto, A. Nishiyama, N. Akiyama, Y. Kanaya, Y. Kajii, "The importance of NO2 and volatile organic compounds in the urban air from the viewpoint of the OH reactivity", *Geophys. Res. Lett.*, 31, L08102, doi:10.1029/2004GL019661 (2004).
- 3) S. Kato, Y. Kajii, R. Itokazu, J. Hirokawa, S. Koda, Y. Kinjo, "Transport of atmospheric carbon monoxide, ozone, and hydrocarbons from Chinese coast to Okinawa island in the Western Pacific during winter", *Atmos. Environ.*, 38, 2975-2981 (2004).
- 4) S. Kato, Y. Miyakawa, T. Kaneko and Y. Kajii, "Urban air measurements using PTR/MS in Tokyo area and comparison with GC-FID measurements", *Int. J. Mass Spectrom.*, 235, 103-110 (2004).
- 5) Y. Sadanaga, A. Yoshino, K. Watanabe, A. Yoshioka, Y. Wakazono, Y. Kanaya, Y. Kajii, "Development of a measurement system of OH reactivity in the atmosphere by using a laser-induced pump and probe technique", *Rev. Sci. Instrum.*, 75, 2648-2655 (2004).
- 6) Y. Sadanaga, R. Isozaki, K. Sakurai, J. Matsumoto, H. Bandow, and Y. Kajii, "Measurements of Peroxy Radicals and Their Photochemistry in the Troposphere: Comparison between the Remote and Urban Atmosphere", *Recent Research Developments in Photochemistry & Photobiology*, 7, Transworld Research Network Inc., pp. 1-17, 2004.

2005年

(国内)

- 1) 松本淳、小杉如央、今井秀和、梶井克純,「レーザー誘起蛍光法による大気中 NO3/N2O5 測定装置」, 分光研究(印刷中)
- 2) 吉野彩子、定永靖宗、渡邉敬祐、吉岡篤史、加藤俊吾、宮川祐子、林一郎、市川雅子、 松本淳、西山綾香、秋山成樹、梶井克純,「OH ラジカル寿命観測による都市大気質の診断 – 東京郊外に おける総合観測 – 」, 大気環境学会誌(印刷中)
- 3) 小杉如央、今井秀和、松本淳、加藤俊吾、梶井克純,「レーザー誘起蛍光法による NO_3/N_2O_5 測定装置の開発と夜間大気中の窒素酸化物による大気酸性化の評価」, 大気環境学会誌 (印刷中)
- 4) 宮川祐子、加藤俊吾、梶井克純,「陽子移動反応質量分析装置を用いた含酸素揮発性有機化合物 (OVOCs)の校正と大気測定」, *大気環境学会誌*(投稿中)

(海外)

- 1) D. Jaffe, P. Swartendruber, P. Weiss-Penzias, S. Kato, A. Takami, S. Hatakeyama, Y. Kajii, "Export of Atmospheric Mercury from Asia", *Atmos. Environ.*, (in press).
- 2) Jun Matsumoto, Hidekazu Imai, Naohiro Kosugi, Yoshizumi Kajii, "In situ measurement of NO_3 / N_2O_5 in the urban atmosphere by thermal decomposition / laser-induced fluorescence technique", *Atmos. Environ.*,(submitted)
- 3) Jun Matsumoto, Hidekazu Imai, Naohiro Kosugi, Yoshizumi Kajii, "A new analyzer for measuring atmospheric NO_3 / N_2O_5 by laser-induced fluorescence technique", *ENVIRONMENTAL MONITORING AND ASSESSMENT*, (submitted)
- 4) J. Matsumoto, H. Imai, N. Kosugi, and Y. Kajii, "Development of a measurement system of nitrate radical and dinitrogen pentoxide using a thermal conversion/laser-induced fluorescence", *Rev. Sci. Instrum.*, (submitted).
- 5) Yasuhiro Sadanaga, Ayako Yoshino, Atsushi Yoshioka, Keisuke Watanabe, Jun Matsumoto, Ayaka Nisihiyama, Naruki Akiyama, Yoshizumi Kajii, "Measurement of the rate coefficient for the OH + NO₂ reaction under the atmospheric pressure: Its humidity dependence", *Geophys. Res. Lett.*, (submitted).
- 6) Yasuhiro Sadanaga, Ayako Yoshino, Shungo Kato, Yoshizumi Kajii, "Measurements of OH reactivity and photochemical ozone production in the urban atmosphere", *Environ. Sci. Tech.*, (submitted).
- 7) S. N. Matsunaga, S. Kato, A. Yoshino, J. Greenberg, Y. Kajii, A. Guenther, "Gas-Aerosol partitioning of semi volatile carbonyls in polluted atmosphere in Hachioji, Tokyo", *Geophys. Res. Lett.*, (submitted).
 - (3) 特許出願 (国内 3 件、海外 2 件)

ポンプ・プローブ法による光化学オゾン発生濃度推定方法およびその方法を利用した光化学オゾン発生 濃度推定装置 (PCT/JP02/09050)

発明者 梶井克純、出願人 科学技術振興機構、 2002.09.05

単一波長レーザー誘起蛍光法による大気中二酸化窒素濃度測定方法及びそれを利用した二酸化窒素濃度測定装置 (PCT/JP02/05363)

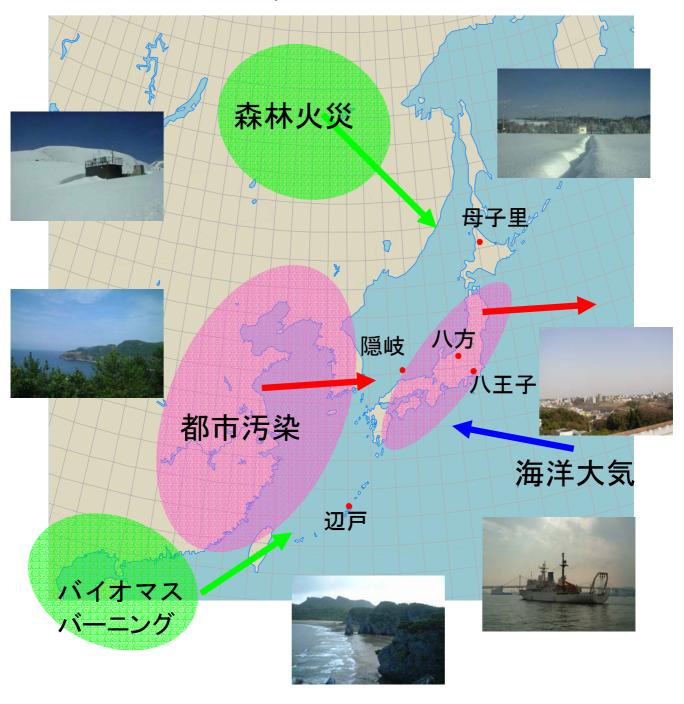
発明者 梶井克純、出願人 科学技術振興機構、 2002.05.31

ブロード発振ダイオードレーザーを用いたガス相関法によるガス濃度測定法 発明者 梶井克純、出願人 科学技術振興機構(出願中)

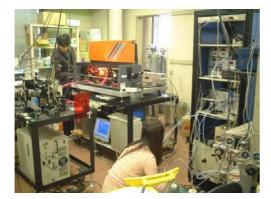
(4) 新聞報道

2000年12月2日	北国新聞	「日本に大量の CO 飛来」
2000年12月2日	北日本新聞	「森林火災の CO 飛来-98 年シベリアから日本へ-」
2000年12月2日	京都新聞	「森林火災 CO 日本にも飛来」
2000年12月2日	熊本日日新聞	「CO、日本に飛来」
2000年12月2日	神戸新聞	「日本に CO 飛来」
2000年12月2日	静岡新聞	「98 年のシベリア森林火災 日本まで CO 飛来」
2000年12月2日	信濃毎日新聞	「シベリア→八方尾根 CO 到達」
2000年12月2日	山形新聞	「森林火災の CO 飛来-98 年シベリアから日本へ-」
2000年12月3日	愛媛新聞	「森林火災の CO シベリアから飛来」
2000年12月3日	四国新聞	「シベリアの一酸化炭素が日本に飛来」
2000年12月3日	宮崎日日新聞	「シベリアの森林火災 CO 日本に大量飛来」

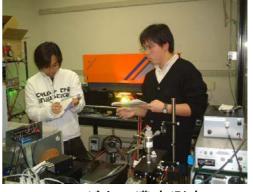
8. 結び


本研究では大気化学反応機構を解明することを目的として、VOCs および一酸化炭素の 高速測定、HOx(OH, HO₂ および RO₂)濃度測定装置、窒素酸化物(NO, NO₂, NO₃, N₂O₅, HONO, HNO3)および HOx(OH,HO2,RO2)濃度測定装置および OH 大気寿命測定装置を新たに開発し 大阪府堺市(大阪府立大学キャンパス)、東京郊外(東京都立大学キャンパス)の都市大気や利 尻、沖縄や大島といった離島での観測を行った。リモートな離島の観測では VOCs の観測 を通して長距離輸送による汚染物質の濃度と輸送時間の関係をはじめて見出した。VOCs の総合観測では61種類の化学成分の定量を行えるまでに至ったが、寿命測定の結果からは 更に多くの化学成分(特に含酸素化合物、例えばアルデヒド、ケトンやアルコール等)につ いて定量する必要性が強く示唆された。HOx については高い精度で実大気濃度の測定が可 能となった。植生の豊かな利尻島ではオゾンが高濃度なときは夜間でも明確な RO₂ が観測 された。また、都市大気でも同様の夜間 RO₂および HO₂が観測されており、これらの発生 源はオゾンーアルケン反応だけではなく NO3 ラジカルと VOC の反応の可能性が示唆され た。窒素酸化物の中でも最も重要な NO₂ は LIF 法により世界最高水準の装置の開発に成功 した。また夜間に重要な NO_3 および N_2O_5 については LIF 法による装置開発を行い、東ア ジアで初めて N_2O_5 の濃度測定に成功し、夜間における NO_3/N_2O_5 の消失過程が重要である ことを示した。OH 寿命測定では特に光化学的に活性な夏季に未知なる OH の反応相手が 3 割存在し、これらを考慮すると現状でのオキシダント生成能率は過小評価されていること が明らかとなった。新たな概念としてオキシダントポテンシャルを提案した。このポテン シャルは OH ラジカルの大気寿命測定から導かれ、大気質の良い指標となることを示した。 初期の目的であった化学摂動法による OH 寿命測定装置の開発は成功した。またその他 の反応性微量成分ガス(ラジカルも含む)の超高感度測定装置の開発にも成功した。これら の装置を用い都市の大気を観測したところ未知なる OH ラジカルの反応相手の存在が明ら かとなったが、具体的にはどのような化学物質なのだろうか。また、NOx の光定常状態の 解析からは新たな NO の酸化過程か NO_2 の直接排出過程の存在が示唆された。 N_2O_5 を経由 する NOx の消失過程は NOx 濃度の 2 次に比例することから強い濃度依存性(地域依存性) があると考えられる。夜間の NOx ロス過程の地域特性はどうなっているのだろうか。夜間 の都市における過酸化ラジカルの発生源は本当に NO3 ラジカルが寄与しているのだろうか。 オキシダントの効果的な制御戦略を構築するためにはどのような観測を計画するべきだろ うか。さまざまな科学的疑問が湧き出してくる。目的が達成できたと思った瞬間にスター トラインに立ち返ってしまったような錯覚に陥る。昔々学生のころに読んだ友永先生の「ス ピンはめぐる」を読んだときのことをふと思い出した。これで全て理解したつもりだと思 っていたら次の刹那に自分の無知に気がつくのである。もしかしたら今までは練習問題を 解いただけでこれからが本番なのかも知れない。

謝辞

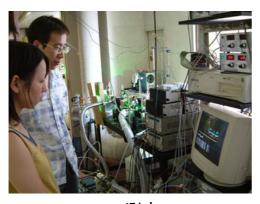

本プロジェクトを遂行するにあたって、ご理解と多大なる援助を賜った浅井冨雄先生はじめ科学技術振興機構の皆様に感謝いたします。中心となってプロジェクトを推進してくれた博士研究員であった加藤俊吾博士(現東京都立大学助教授)、松本淳博士、定永宗靖博士に感謝いたします。彼らのお陰で提案当初立てていた研究目標をおおむね達成することができました。東京大学先端科学技術研究センター在職当時所属していた学生および現所属の東京都立大学工学部の研究室に所属している学生の皆様に感謝いたします。彼らの努力

がパズル絵の1つひとつのピースとなっています。硝酸や亜硝酸の濃度測定装置開発や大阪府の集中観測でお世話になりました大阪府立大学坂東博教授はじめ研究室の皆様に感謝いたします。HOx 濃度測定で貴重な助言をいただいた金谷有剛博士(海洋開発機構)に感謝いたします。沖縄観測や装置開発で協力してくださった廣川淳博士(現北海道大学助教授)に感謝いたします。北海道母子里の観測では多大なる援助をいただいた松見豊先生(名古屋大学教授)に感謝いたします。プロジェクトを通して貴重な助言や激励を下さった秋元肇先生(海洋開発機構)に感謝いたします。最後に膨大な事務書類を黙々と効率的に片付けてくださった上坂陽子秘書(旧姓谷口)に感謝いたします。


東アジアの大気

実験風景

OHラジカル寿命測定


HO₂ ラジカル濃度測定

大気観測(大阪府立大学)

N₂O₅合成

RO2測定

電気工作

ガスクロ分析

居室

洋上観測

炭化水素測定装置

みらい

船舶積込

白鳳丸

Scripps 海洋研究所 Melville

地上観測

 O_3 , CO, SO_2 , NOx 計

陽子移動型質量分析装置 (PTR-MS)

沖縄辺戸岬観測所

キャニスターサンプリング (沖縄辺戸岬)

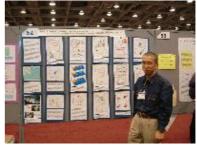
PERCA-LIF 法による 過酸化ラジカル測定(利尻島)

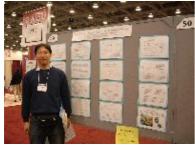
秋晴れの利尻島

観測小屋の建設 (東京都立大学屋上)

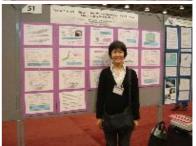
NO₃, N₂O₅ 測 定 (東京都立大学)

NO₃, N₂O₅ 測 定 (東京都立大学)


NO₃, N₂O₅ 測 定 (伊豆大島)



伊豆大島の夜明け


学会発表

メンバー

