東京大学大学院理学系研究科、教授 橘 和夫

「複合体形成に基づく膜タンパク質の機能制御」

研究期間:平成10年12月1日~平成15年11月30日

1.研究実施の概要

膜タンパク質の多くは、細胞外側からのメッセンジャー分子との結合、神経筋肉での膜 電位変化、あるいは網膜での光といった刺激により活性化され、細胞内での酵素活性の 変化や無機イオン流入により細胞内での一連の生理変化をもたらす。しかし情報伝達の 達成と同時にこれらは静止状態に戻るため、この活性化状態は生理的条件下で一過性 であり、活性化に伴う立体構造変化に関する情報は推定の域を出るものはない。本研究 課題では、膜タンパク質の活性化状態に強い親和性を示す天然毒などの外因性分子を 用いて活性化状態の寿命を延ばすことでその立体構造情報を取得解析し、膜タンパク質 の活性化に関する構造的根拠を解明することを目的としてきた。

このためここでの研究遂行の骨子は、(1)同位体など構造情報取得の手掛りが導入可 能な有機合成によるリガンド分子の調達、および(2)こうしたリガンドが調達された場合で の脂質二重膜内での複合体に関する構造情報取得のための方法論の開発、の二つに 大別される。具体的な対象分子複合体として、サンゴ礁領域での魚による食中毒シガテ ラの主原因化合物であり膜系では最も強い会合定数 (10 pM) を有するものの一つで あるポリ環状エーテル天然物シガトキシンと、この分子の毒性発現の際の標的細胞成分と され、神経細胞および筋肉に発現している電位依存性ナトリウムチャネルタンパク質 (Voltage-sensitive sodium channel; 以下 VSSC)の組合せを念頭に置き、天然からの量的 調達が望めないこのリガンドを合成により調達するとともに、ここで想定される複合体形成 様式の一般性を検証する目的で細胞膜貫通長を有するポリ環状エーテル分子種の集積 を行なうことを前提としてきた。ここで強い親和性が見出された複合体の構造情報は主と して(1)光親和性標識法と質量分析を用いるタンパク質での結合部位の特定、(2)特定 された膜貫通部位とリガンド分子の双方への同位体標識、(3)膜への再構成による複合 体の調製、(4)NMR による標識部位間の距離情報の取得、(5)そして以上で得られた知 見に基づく計算化学による脂質二重膜中内でのドッキング・モデルの作成というスキーム により得る計画であった。以下に、得られた成果のうち、主要なものに関して報告する。 (1)ポリ環状エーテル天然物の単離・構造決定

シガテラ中毒の多発する仏領ポリネシア産のウツボ内臓および生産生物である渦鞭毛 藻 Gambierdiscus toxicus 中のシガトキシン新規同族体16成分の構造を得た。また食中毒 の原因貝類より電位依存性ナトリウムチャネル(以下 VSSC)に親和性を有するブレベトキ シン新規同族体3種を単離・構造決定し、以上に関してマウス毒性とVSSCに対する親和 性における構造活性相関を得た。加えて、魚の大量斃死をもたらす瀬戸内海産の赤潮 鞭毛藻 Gymnodinium mikimotoiに一連のポリ環状エーテル、ギムノシン類の存在を認め、 これらがこれまでこの類の分子では報告のない VSSC に依存しない細胞毒性を有するこ とが示された。このうち主要成分であるギムノシン-A を単離し、構造決定を達成した。また、 次項に述べるように本分子の全合成も達成している。

(2)シガトキシンおよび関連ポリエーテル系天然物の全合成研究

本プログラム以前に見出していたラクトン由来エノールエステルの B-アルキル鈴木—宮 浦反応を基盤とする収束的エーテル環連結法に関して、連結する分子の種類に応じた 反応条件の多様化、最適化によりこれを一般化することが出来た。これを鍵反応として、 シガトキシン分子群のうち現在最も毒性の強い 51-ヒドロキシ CTX3C の全合成を進め、現 在までに FGHIJKLM 環部の合成を達成した。これを ABCD 環部と E 環を介して連結す ることにより CTX3C の全合成を達成する予定であるが、想定外であった F 環側連結部位 の立体障害が判明し、現在この解決を図っている。

シガトキシン生産生物の培養により単離構造決定され中程度のマウス毒性を有するガ ンビエロールに関しては、各々合成した部品を上記方法論により F 環で連結することによ り8環性ポリエーテル骨格を合成し、さらに、H 環の官能基化とトリエン側鎖の導入を行い、 全合成を達成した。この方法により合成した H 環オレフィン、メチル基、および側鎖に関 するいくつかの合成類縁体に関してマウス毒性を調べたところ、この部分の構造の毒性 に対する関与がかなりあるという知見を得た。この一方、A 環側の改変は生理活性への影 響が少ないことが確認され、本全合成で供給可能となった本分子のこの部位での修飾に よる標的生体分子の同定等が可能であることが示された。

また、上記鈴木-宮浦反応を活用することで、本プログラムで単離構造決定された細胞 毒性ポリエーテル化合物ギムノシン-Aの全合成を達成した。

(3)チャネル活性化の新規モニター系およびタンパク質膜貫通部位モデル系の開発 細胞膜中で形成した複合体の構造解析を行なうためには、膜中での対象タンパク質の 純度と濃度を高めた再構成系の供給が望ましい。そこで既報に従い電気ウナギ発電器 官より VSSC を精製し透析によりこれをリン脂質二重膜に再構成したところ、ブレベトキシ ンによる強い親和性が再現できた。次に二重膜内外のイオン分布を操作することで、電 位感受性蛍光剤によりモニター可能な膜電位を有するリポソームを調製した。ここにブレ ベトキシンを投与した結果、再現性に問題を来たしているものの VSSC 活性化による脱分 極が観測された。その後これに VSSC 活性化作用を有するアルカロイドであるベラトリジン を共存させることで再現性が上がることを見出した。この結果を踏まえ、本法をシナプトソ ームおよび組換え DNA により VSSCを発現させた動物細胞に用いたところ、再構成リポソ ームに比較して高い再現性およびプレベトクシン濃度への依存性を与えることを見出し、 これにより電気生理的手法を用いないチャネル機能のモニターが可能となることが示され た。

ポリ環状エーテル分子と膜タンパク質との親和性は、後者に共通する膜貫通へリックス の束への前者の挿入により、これが束の中での相対三次元構造の変化を伴う場合に活 性化をもたらすものと想定している。この作業仮説が正しければ膜タンパク質に非特異的 な一般的親和性を有するはずであり、これを検証する目的で、上記ナトリウムチャネルに 加えて、脂質二重膜貫通構造の形成が可能なモデルペプチドによる膜タンパク質モデル 作成を試みている。このうち、膜貫通オリゴマーによるチャネル形成が提唱されているミツ バチ毒のペプチド成分メリチン(26 残基)に関し、コレステロールの添加により構造が安定 化されることを見出した。

(4) 膜タンパク質構造解析の方法論開発

同位体標識した試料を用いる固体NMRによる膜中での認識様式観測の有効性を検証 するモデルとして、リン脂質中で膜含有ステロールと複合体を形成することでイオン透過 性チャネルを形成するとされているアンホテリシンB(AmB)に関し、エルゴステロールおよ びコレステロールそれぞれとの連結体を調製し二重膜中での分子配向性を調べた結果、 前者に顕著なイオン透過性増大活性が認められた。AmBにC13標識したリン脂質との連 結体を脂質二重膜に再構成した系の固体 NMR(REDOR)による原子間距離測定により、 従来 AmB に提唱されていたモデルのうち single-length チャネルを支持するする結果を 得た。

低分子と膜タンパク質の複合体構造解析に際し、チャネルタンパク質に作用することが 知られる薬物 semotiadil 誘導体による光親和性標識の結果、標識体に関する ESI-MS/MS 解析がきわめて有効であることを見出した。また、L型カルシウム・チャネルに 関して、液体ヘリウム温度での電子顕微鏡による単分子構造解析により、従来提唱された 本チャネルタンパク質の構造モデルを支持する結果を得た。

計算化学的なアプローチとして、静的状態の結晶構造に基づく分子動力学法により得た光受容膜タンパク質ロドプシンのレチナール光異性化による構造変化モデルを用いて、 他の GTP 結合タンパク質共役受容体膜タンパク質のリガンド認識による構造変化モデル と関連づけることができた。 2.研究構想

レセプターやイオンチャネルなどの膜結合タンパク質は、生命活動の根源とも言える細胞内外のシグナル伝達に深く関与している。これらの生理機能を分子構造レベルで理解するためには静止時および活性化状態それぞれの立体構造を知る必要があるが、これらは一般にX線結晶解析や NMR 分光法に適さず、構造研究が著しく遅れている。特にこれらの膜貫通部位は、細胞外でのリガンドの結合による構造変化を細胞内での酵素活性の制御として伝えるなど、その膜内における相対配置が重要であるにも拘らず、NMR による原子配置情報が異方性と緩和時間の関係で取得困難であるために、その構造研究は大きく立ち遅れている。

近年になり、植物プランクトンである渦鞭毛藻が産生するシガトキシンおよびブレベトキ シンが神経細胞膜のナトリウムチャネルの膜貫通セグメントに結合することが提唱され、 我々もこれを支持する実験結果を得ていた。同様のポリ環状エーテル構造に富む天然物 が主に海洋生物から分離構造決定されているが、これらは同時に非常に強い生物活性 を有しているので「超活性天然物」と呼ばれている。なかには、マイトトキシンのように猛毒 として知られるフグ毒テトロドトキシンの2000 倍の毒性(有効モル投与量)を有するものも 含まれる。

これらの化合物は共通して梯子状ポリエーテル構造を有しているが、ナトリウムチャネル を用いた結合実験を通じて、分子の全長およびエーテル環のサイズと配列が膜タンパク 質との相互認識と密接に関連していることが分かってきた。本研究代表者らは、梯子状ポ リエーテル化合物が結合する膜タンパク質の部位には構造的特徴(構造モチーフ)が存 在し、その結合強度は前者の構造に対応したアミノ酸残基の空間的配置に依存すると推 定た。すなわち、これら分子中のエーテル酸素の三次元配置を変化させれば、結合相手 のアミノ酸配列を特異的に認識させることができ、これにより膜貫通部位を特異的に識別 できるリガンド分子を創製できる。これを発展させれば、細胞の不活性化機構により一過 性にしか結合しない本来の内因性リガンドとは異なる結合部位を有する低分子を開発す ることができ、これらの長寿命複合体形成に基づく生理機構の分子的解析からその機能 改変までの広範な研究分野に利用可能である。

これらの研究遂行には、精密な構造解析および高度な化学合成の知識と経験が必須 であるが、本プログラム申請時点での本チームの構成はこの研究課題にもっともふさわし いと判断された。例を挙げると、橘、村田、安元、中村らは、マイトトキシン、シガトキシン、 ゾーザンテラトキシンなど代表的な超活性天然物の単離・構造決定を世界に先駆けて成 し遂げ、また、佐々木、橘らは超活性天然物基本構造の化学合成において実績を挙げて いた。また、中山はテトロドトキシンの認識に基づくナトリウムチャネルの単離を行うなど、 化学からの膜結合タンパク質研究の第一人者である。加えて、得られる実験データの集 積により脂質二重膜中での分子複合体構造の視覚化に必須である計算化学的手法を担 うべく、石黒の参加を得た。 3.研究成果

3.1 "複合体構造解析グループ(橘・村田・佐々木グループ)"

(1) 研究内容及び成果

【1】鈴木 - 宮浦カップリング反応を基盤とする収束的ポリ環状エーテル骨格構築法の開 発

シガトキシン類をはじめとする巨大ポリ環状エーテル系天然物の効率的化学合成を実 現するためには、エーテル環フラグメントを連結してポリ環状エーテル骨格を構築する収 束的合成法の確立が不可欠である。我々は、環状エキソエノールエーテルを9 BBNでヒ ドロホウ素化して得られる B-アルキルボラン A とラクトン由来エノールトリフラート B との鈴 木 - 宮浦カップリング反応によるエーテル環連結と、還元的エーテル化による6員環閉環 を組み合わせた収束的なポリ環状エーテル骨格構築法を開発した(eq 1)。さらに、反応 基質としてラクトン由来エノールホスフェートを用いることにより、6員環だけでなく7~9員 環などの中員環エーテルも基質として利用できるようになり、より一般性の高い合成法へ と展開することができた(eq 2, Table 1)。

次に、本反応を用いてシガトキン類のABCD環部の合成を行った(Schmel)。カップリング生成物3cのエノールエーテル部位を立体選択的にヒドロホウ素化し、得られたアルコールを酸化してケトン4とした。これをシリルエノールエーテルに変換した後、Pd(OAc)により酸化してエノン5を得た。さらに,メチルケタール化、B-SFHBF3 OB-還元によりC環を構築し、得られた6より6工程でトリエン7へと導いた。第1世代のCubbs触媒による閉環メタセシス反応でA環7員環エーテルを構築し、ABCD環部8の合成を完了した。

Table 1

Scheme 1. Reagents and conditions: (a) ThexylBH₂, THF, -10 \rightarrow 0 °C; then 3 M NaOH, 30% H₂O₂, rt, 92%; (b) (COCl)₂, DMSO, NEt₃, CH₂Cl₂, -78 °C, 99%; (c) TMSCl, LiHMDS, NEt₃, CH₂Cl₂, -78 °C; (d) Pd(OAc)₂, CH₃CN, rt, 96% (2 steps); (e) HF, CH₃CN, rt, 83%; (f) TIPSCl, Et₃N, DMAP, CH₂Cl₂, rt, 87%; (g) HC(OMe)₃, PPTS, toluene, 45 °C; (h) Et₃SiH, BF₃ OEt₂, CH₂Cl₂, rt, 94% (2 steps); (i) SO₃ pyr, NEt₃, DMSO, CH₂Cl₂, 0 °C; (j) Ph₃PCH₃Br, NaHMDS, THF, 0 °C, 91% (2 steps); (k) LiDBB, THF, -78 °C; (l) CSA, *p*MeOC₆H₄CH(OMe)₂, CH₂Cl₂-DMF, rt, 59% (2 steps); (m) TIPSOTf, 2,6-lutidine, CH₂Cl₂, 0 °C; (n) NaHMDS, allylbromide, DMF, rt, 94% (2 steps); (o) (PCy₃)₂Cl₂Ru=CHPh, CH₂Cl₂, rt, 97%.

【2】シガトキシンの全合成研究

シガトキシンおよびその同族体は珊瑚礁海域で頻発する世界最大規模の自然毒食中 毒であるシガテラの主要原因毒として、安元、村田らにより単離・構造決定されたポリ環状 エーテル系天然物である。神経細胞膜の電位依存性ナトリウムチャネルに特異的に結合 し、これを活性化することにより、非常に強力な神経毒性を発現する。しかし、天然からの 試料入手が困難なため、チャネル蛋白質との分子認識機構の解明あるいは免疫学的検 出法の開発などのために化学合成による量的供給が切望されている。前述の鈴木 - 宮 浦カップリング反応を基盤とする収束的ポリ環状エーテル骨格構築法を用いて、シガトキ シン同族体の中で最も毒性が強いとされる 51 ヒドロキシCTX3C(9)の全合成研究を行っ た。

【合成計画】51 ヒドロキシCTX3C(9)をABCD環部 10とFGHIJKLM 環部 11 に分割し、 両者を Horner Wittig 反応によりカップリングし、ヒドロキシチオケタール環化により E 環を 閉環することで合成することを計画した (Scheme 2)。ABCD環フラグメント 10 は、前述の 8 より容易に合成可能であり、FGHIJKLM 環部フラグメント 11 は、鈴木 - 宮浦カップリング 反応を基盤とする収束的ポリ環状エーテル合成法を利用して H 環およびJ 環での連結に よって合成することを計画した。

Scheme 2. Retrosynthetic analysis of 51-hydroxyCTX3C.

【GHLJKLM環部の合成】G環エキソエノールエーテル15とI環エノールホスフェート13を 鈴木 - 宮浦カップリング反応により連結し85%の収率で16を得た (Scheme 3)。得られた 16のヒドロホウ素化では目的のアルコール17は低収率であったが、ジメチルジオキシラン (DMDO)によるエポキシ化の後、Et₃SiH/BH₃ THFを用いて低温で還元することにより17を 単一生成物として収率良く得ることができた。次いで、H環を混合チオケタールとして閉環、 この酸化で得られるスルホン18をAIMe3で処理することにより核間メチル基を立体選択的 に導入した。アセチル基を除去したジオール19よりGHI環エキソエノールエーテル20へと 導き、KLM環エノールホスフェート14aとの鈴木 - 宮浦カップリングを試みたが、望む生成 物21はほとんど得られなかった。詳細な反応条件の検討の結果、エノールトリフラート14b を用いて0°Cで反応を行うことにより71%の収率で21を得ることができた。さらに、エノール エーテル部の立体選択的ヒドロホウ素化を経て合成した混合チオケタール22のラジカル 還元によりGHIJKLM環部23の合成を達成した。

Scheme 3. Reagents and conditions: (a) 15, 9-BBN, THF, rt; then 1 M aq. NaHCO₃, 13, Pd(PPh₃)₄, DMF, 50 °C, 85%; (b) DMDO, acetone, $-78 \rightarrow -20$ °C; (c) Et₃SiH, BH₃ THF, CH₂Cl₂, -20 °C, 60% (2 steps); (d) KOrBu, PMBCl, TBAI, THF, rt, 80%; (e) TBAF, THF, rt, 97%; (f) TPAP, NMO, 4 Å MS, CH₂Cl₂, rt, quant.; (g) DDQ, CH₂Cl₂, pH 7 phosphate buffer, rt; (h) EtSH, Zn(OTf)₂, CH₂Cl₂, rt; then Ac₂O, DMAP, Et₃N, 0 °C, 84% (3 steps); (i) mCPBA, CH₂Cl₂, rt, 96%; (j) AlMe₃, CH₂Cl₂, $-78 \rightarrow 0$ °C; (k) K₂CO₃, MeOH, rt, 83% (2 steps); (l) TBSOTf, 2,6-lutidine, CH₂Cl₂, rt; (m) CSA, MeOH-CH₂Cl₂, 0 °C, 84% (2 steps); (n) I₂, PPh₃, imidazole, THF, rt, 94%; (o) KOrBu, THF, 0 °C, 87%; (p) **20**, 9-BBN, THF, rt; then 3 M aq. Cs₂CO₃, **14b**, Pd(PPh₃)₄, DMF, 0 °C, 71%; (q) BH₃ THF, THF, rt; then 3 M NaOH, 30% H₂O₂, rt, 81%; (r) EVE, CSA, CH₂Cl₂, rt; (s) TBAF, THF, rt; (t) TPAP, NMO, 4 Å MS, CH₂Cl₂, rt; (u) EtSH, Zn(OTf)₂, CH₂Cl₂, rt; (v) Ph₃SnH, AIBN, toluene, reflux, 56% (5 steps).

【FGHI環部の合成】当初、GHIJKLM環フラグメント23からF環の構築を経由する FGHIJKLM環部の合成を検討したが困難であった。そこで、23の合成により得られた反 応条件を基に、二重結合を保護したFG環12にI環13、KLM環14bを順次連結する、より 収束性の高い合成経路を検討した(Scheme 4)。ラクトン由来エノールホスフェートのPd(0) 触媒によるカルボニル化反応を新たに開発し、ラクトン24からα,β-不飽和エステル26を合 成した。次に、F環部二重結合の保護のために、AD-mix-αを用いて位置選択的なジヒド ロキシル化を行い、生じたジオールをアセトニドとして保護し27とした。さらに2工程で得ら れる28のDMDOによるエポキシ化、続くEt₃SiH/BH₃ THF還元によりアルコール29を単一 生成物として得ることができた。さらに保護基の変換を行い、ジオール30を経てFG環エキ ソエノールエーテル12へと導き、13との鈴木 - 宮浦カップリング反応により31を得た。スル ホン32aへと誘導し、AlMe₃による核間メチル基の導入を試みたが、3環性化合物18の場 合と異なりα メチル体のみを与えた。種々検討の結果、テトラアセテート体32bをt ブチル メチルエーテル中AlMe₃で処理することにより、目的とするβ メチル体33を主生成物とし て合成することができた。さらに保護基の変換を行い、34を経てFGHI環エキソエノールエ ーテル35の合成を完了した。

Scheme 4. Reagents and conditions: (a) KHMDS, (PhO)₂P(O)Cl, THF-HMPA, -78 °C; (b) Pd(PPh₃)₄, CO, MeOH, Et₃N, DMF, 50 °C, 75% (2 steps); (c) AD-mix- α , MeSO₂NH₂, *t*BuOH-THF-H₂O, 0 °C; (d) Me₂C(OMe)₂, CSA, CH₂Cl₂, rt, 79% (2 steps); (e) DIBALH, CH₂Cl₂, -78 °C, 91%; (f) TIPSOTf, 2,6-lutidine, CH₂Cl₂, 0 °C; (g) DMDO, CH₂Cl₂, -20 °C; (h) Et₃SiH, BH₃ THF, CH₂Cl₂, -20 \rightarrow 0 °C, 76% (3 steps); (i) TBAF, THF, rt, 97%; (j) KO*t*Bu, BnBr, THF, rt, 98%; (k) EtSH, Zn(OTf)₂, CH₂Cl₂, rt; (l) Me₂C(OMe)₂, CSA, CH₂Cl₂, rt, 78% (2 steps); (m) EtSH, Zn(OTf)₂, CH₂Cl₂, rt, 60%; n) TBSOTf, 2,6-lutidine, CH₂Cl₂, rt; (o) CSA, MeOH- CH₂Cl₂, 0 °C, 82% (2 steps); (p) I₂, PPh₃, imidazole, benzene, rt; (q) KO*t*Bu, THF, 0 °C, 86% (2 steps); (r) **12**, 9-BBN, THF, rt; then 1 M aq. NaHCO₃, **13**, Pd(PPh₃)₄, DMF, 50 °C; (s) DMDO, CH₂Cl₂, -20 °C; then Et₃SiH, BH₃ THF, -20 °C, 70% (3 steps); (t) EVE, CSA, CH₂Cl₂, rt; (u) TBAF, THF, rt, 94% (2 steps); (v) TPAP, NMO, 4 Å MS, CH₂Cl₂, rt, 96%; (w) EtSH, Zn(OTf)₂, CH₂Cl₂, rt; (w) mCPBA, NaHCO₃, CH₂Cl₂, rt, 69% (3 steps); (z) AlMe₃, *t*BuOMe, 0 °C; (aa) K₂CO₃, MeOH, rt; (bb) Me₂C(OMe)₂, CSA, CH₂Cl₂, rt, 58% (3 steps); (ff) I₂, PPh₃, imidazole, benzene, rt; (g) *v*-S86% (2 steps); (f) I₂, PPh₃, imidazole, benzene, rt; (g) *v*-S86% (2 steps); (z) EtSH, Zn(OTf)₂, CH₂Cl₂, rt, 60°, 70% (3 steps); (z) AlMe₃, *t*BuOMe, 0 °C; (aa) K₂CO₃, MeOH, rt; (bb) Me₂C(OMe)₂, CSA, CH₂Cl₂, rt, 58% (3 steps); (cc) EtSH, Zn(OTf)₂, CH₂Cl₂, rt, 89%; (dd) TBSOTf, 2,6-lutidine, CH₂Cl₂, rt; (ee) CSA, MeOH-CH₂Cl₂, 0 °C, 83% (2 steps); (ff) I₂, PPh₃, imidazole, benzene, rt; (gg) *t*-BuOK, THF, 0 °C, 86% (2 steps).

【FGHLJKLM環部の合成】FGHI環35と14bの鈴木 - 宮浦カップリング反応は、59%の収率で望む36を与えた (Scheme 5)。立体選択的ヒドロホウ素化を経てケトン37へと導き、

EtSH/Zn(OTf)2処理により混合チオケタール38とした。次いで、ラジカル還元による脱硫を 行い8環性化合物39の合成に成功した。9員環上のvic ジオールをギ酸オルトエステル へと変換後、Ac2O中加熱分解することにより二重結合を導入し40を得た。さらに保護基の 変換を行い、FGHIJKLM環ジオール41の合成を達成した。

Scheme 5. Reagents and conditions: (a) 35, 9-BBN, THF, rt; then 3 M aq. Cs_2CO_3 , 14b, $Pd(PPh_3)_4$, DMF, rt, 59%; (b) BH₃ THF, THF, rt; then aq. NaOH, H₂O₂, rt, 57%; (c) EVE, CSA, CH₂Cl₂, rt; (d) TBAF, THF, rt; (e) TPAP, NMO, 4 Å MS, CH₂Cl₂, rt; (f) EtSH, Zn(OTf)₂, CH₂Cl₂, rt, 64% (4 steps); (g) Ph₃SnH, AIBN, toluene, reflux, 98%; (h) HC(OMe)₃, PPTS, CH₂Cl₂, rt; i) Ac₂O, reflux, 69% (2 steps); (j) LiDBB, THF, -78 °C; (k) M₂C(OMe)₂, CSA, CH₂Cl₂, rt; (l) Ac₂O, pyr, rt; (m) EtSH, Zn(OTf)₂, CH₂Cl₂, rt, 69% (4 steps).

こうして得られた41からアルデヒド42へと誘導し、ホスフィンオキシド10とのHorner Wittig 反応のよるカップリングを試みたが、F環部9員環上アルデヒド部位の予想外の立体障害 により達成することができなかった(Scheme 6)。

Scheme 6

【3】神経毒ガンビエロールの全合成と構造活性相関

ガンビエロール(44)は НŌ Me Me 渦鞭毛藻Gambierdiscus С п R *toxicus*の培養藻体から Ĥ Ĥ Me マウス致死成分として単 Me ЮΗ gambierol (44) 離・構造決定されたポリ Ле

環状エーテル系天然物である。その毒性は腹腔内投与による最小致死量(MLD)が50 µg/kgと強く,またマウスの中毒症状が食中毒シガテラの主要原因毒シガトキシンのそれと 類似していることから,ガンビエロールのシガテラ中毒への関与が推定されている。またご く最近、ガンビエロールがプレベトキシンの電位依存性Na⁺チャネルへの結合を弱いなが らも阻害することが報告された。しかし天然からは極微量しか試料が得られず、毒性発現 機構の解明や詳細な生物活性の評価を行うためには、化学合成による試料の供給ルー トを開発することが不可欠である。またガンビエロールは8環性ポリエーテル骨格と不安定 なトリエン側鎖から成る特徴的な化学構造を有しており,有機合成化学の標的分子として 興味深い。このような背景から、ガンビエロールの全合成研究が国内外で活発に展開さ れている。我々は、前述の鈴木 - 宮浦カップリング反応を用いる収束的ポリ環状エーテ ル骨格構築法を合成戦略の基盤とし、ガンビエロールの最初の全合成を達成した。また、 本全合成によって試料供給が初めて可能となり、マウスの組織病理学所見および構造活 性相関について有用な知見を得ることができた。

Scheme 7. Retrosynthetic analysis of gambierol.

【合成計画】 ガンビエロールの不安定でしかも立体選択的構築の困難な共役(Z,Z)-ジエンを含むトリエン側鎖は、(Z)-ビニルブロミド 45 と(Z)-ビニルスズ 46 の Stille 反応により全合成の最終段階で導入することとした (Scheme 7)。また、45 の前駆体となる 8 環性ポリエーテル 骨格 47 を、ABC 環部エキソエノールエーテル 48 と EFGH 環部エノールホスフェート 49 の鈴木 - 宮浦カップリング反応により合成する収束的な合成計画を立案した。

【ABC環部の合成】B環に相当する文献既知化合物50を出発物質とし,アルコール53の 分子内hetero Michael反応によりA環を構築し、最後にC環を構築する直裁的な合成を 計画した(Scheme 8)。まず、化合物50の二重結合を酸化開裂してアルデヒドとし、 Horner Emmons反応により増炭した後、エステル部分を還元してアリルアルコール51を 得た。Sharpless不斉エポキシ化によりエポキシアルコールとし、続くRed Al還元によりエ ポキシドを位置選択的に開裂してC6位水酸基を導入した。得られた1,3 ジオール52をア ニシリデンアセタールとして保護した後、DIBALHにより位置選択的に還元開裂し、続く 酸化とWittig反応による増炭、TBS基の除去によりアルコール53を得た。こうして得た53を THF中NaHで処理すると、分子内hetero Michael反応が円滑に進行し、望む環化体54が 単一の立体異性体として得られた。

Scheme 8. Reagent and conditions: (a) OsO₄, NMO, aq. THF, rt; then NaIO₄, rt; (b) (*i*PrO)₂P(O)CH₂CO₂Et, KO*t*Bu, THF, $-78 \rightarrow 0$ °C; (c) DIBALH, CH₂Cl₂, -78 °C, 87% (3 steps); (d) (–)-DET, Ti(O*i*Pr)₄, TBHP, 4Å MS, CH₂Cl₂, -28 °C; (e) Red-Al, THF, 0 °C, quant. (2 steps); (f) *p*MeOC₆H₄CH(OMe)₂, PPTS, CH₂Cl₂, rt; (g) DIBALH, CH₂Cl₂, 0 °C, 80% (2 steps); (h) SO₃pyr, Et₃N, DMSO, CH₂Cl₂, 0 °C; (i) Ph₃P=CHCO₂Me, toluene, 80 °C, quant. (2 steps); (j) TBAF, HOAc, THF, 35 °C, 91%; (k) NaH, THF, rt, 86%; (l) DIBALH, CH₂Cl₂, -78 °C; (m) Ph₃PCH₃Br, NaHMDS, THF, 0 °C, 91% (2 steps); (n) 9BBN, THF, rt; then aq. NaHCO₃, H₂O₂, rt; (o) BnBr, KO*t*Bu, Bu₄NI, THF, rt, 94% (2 steps); (p) DDQ, CH₂Cl₂, pH 7 phosphate buffer, rt; (q) BnBr, KO*t*Bu, Bu₄NI, THF, rt, 93% (2 steps); (n) *T*SOH, MeOH, CHCl₃, rt, 95%; (s) TBSOTf, 2,6-lutidine, CH₂Cl₂, 0 °C; (t) CSA, MeOH, rt, 92% (2 steps); (u) TPAP, NMO, 4Å MS, CH₂Cl₂, rt, 95%; (v) Tebbe reagent, THF, 0 °C, 90%; (w) 9-BBN, THF, rt; then aq. NaHCO₃, H₂O₂, rt; (x) SO₃pyr, Et₃N, DMSO, CH₂Cl₂, 0 °C; (y) (*i*PrO)₂P(O)CH₂CO₂Et, KO*t*Bu, THF, $-78 \rightarrow 0$ °C, 90% (3 steps); (z) DIBALH, CH₂Cl₂, -78 °C, 98%; (aa) *m*CPBA, CH₂Cl₂, 0 °C, 99%; (b) SO₃pyr, Et₃N, DMSO, CH₂Cl₂, 0 °C; (cc) Ph₃PCH₃Br, NaHMDS, THF, 0 °C, 87% (2 steps); (dd) TBAF, THF, rt, 98%; (ee) PPTS, CH₂Cl₂, rt, 98%; (ff) PMBCl, KO*t*Bu, Bu₄NI, THF, rt; (gg) OsO₄, NMO, aq. THF, rt; then NaIO₄, rt; (hh) NaBH₄, MeOH, rt, 86% (3 steps); (ii) I₂, PPh₃, imidazole, C₆H₆, rt, 95%; (jj) KO*t*Bu, THF, 0 °C, 91%.

次に,ヒドロキシエポキシド57の6-endo環化によるC環の構築を行った。化合物54から 導いたアリルアルコール55のSharpless不斉エポキシ化反応は、望むα エポキシド56を主 生成物とする約6:1の立体異性体の混合物を与えた。一方,mCPBA酸化では56のみが 単一生成物としてほぼ定量的に得られた。さらに3段階でヒドロキシエポキシド57へと導き、 酸処理により6-endo環化を行い3環性化合物58を高収率で得た。さらに6段階の反応を 経てABC環部フラグメント48へと導いた(化合物50から36段階,全収率18%)。

【EFGH環部の合成】当初、EFGH環部の第一世代合成法として、鈴木-宮浦カップリング 反応を利用した収束的合成ルートを開拓したが、効率の点で問題を残していた。そこで、 理研の中田らにより開発されたSmI₂を用いる還元的エーテル環構築法をF環およびH環 の構築に利用し,G環の構築に6-endo環化を用いるより効率的な合成計画を立案した (Scheme 9)。

文献既知化合物59を出発物質として、β アルコキシアクリル酸ユニットの導入を経てア ルデヒド60を合成した。中田らの方法に従い、60をMeOH存在下THF中室温でSmI2処理 すると還元的環化反応が速やかに進行し、H環に相当するラクトン61が収率70%で得られ た。Sharpless不斉エポキシ化反応を含む8工程でビニルエポキシド62へと変換し、酸処理 による6-endo環化を行い、G環を構築した。63よりメチルケトン64へと誘導し、再びSmI2を 用いる還元的環化反応を行うことによりFGH環部65を単一生成物として収率87%で得た。 次いで、E環をラクトンとして閉環し、Nicolaouらの手法を改良した反応条件でEFGH環部 エノールホスフェート49へと変換した(化合物59から33段階,全収率22%)。

【ガンビエロールの全合成】ABC環部エキソエノールエーテル48を9-BBNでヒドロホウ素 化してB-アルキルボランとし、これとEFGH環部エノールホスフェート49の鈴木-宮浦カップ リング反応を、塩基としてCs2CO3を用いてPdCb(dppf)触媒存在下DMF中50°Cで行った ところ、目的とするカップリング生成物66を86%で得ることができた(Scheme 10)。化合物 66のヒドロホウ素化をBH3 THF錯体を用いてTHF中室温で行うと、望むアルコールを単一 生成物として収率87%で与え、続くTPAP酸化によりケトン67とした。PMB基を除去した後、 EtSH/Zn(OTf)2で処理することにより混合チオケタールとしてD環を閉環した。この際アセ トニドが同時に除去されるので、one-potでアセチル化を行いジアセテート68とした。ラジカ ル還元による脱硫を行い、8 環性ポリエーテル骨格47の合成を完了した。

伊藤 三枝法によるH環二重結合の導入とC30位メチル基の立体選択的導入を経て三 級アルコール69へと導き、さらに保護基の変換を行って70を経て一級アルコール71とした。 70を酸化して得られるアルデヒドをジブロモオレフィンへと変換後、上西らの方法により立 体選択的に還元して(Z) ビニルブロミド72へと誘導した。次いで,(Z) ビニルスズ46との

Scheme 9. Reagents and conditions: (a) O₃, MeOH, CH_2Cl_2 , -78 °C; then NaBH₄, 0 °C, 96%; (b) I₂, PPh₃, imidazole, THF, rt, 99%; (c) 1,3-dithiane, *n*BuLi, THF, $-20 \rightarrow 0$ °C; (d) TBAF, THF, rt, 95% (2 steps); (e) ethyl propiolate, NMM, CH₂Cl₂, rt; (f) MeI, NaHCO₃, aq. MeCN, rt, 94% (2 steps); (g) SmI₂, MeOH, THF, rt, 70%; (h) DIBALH, CH₂Cl₂, -78 °C; (i) Ph₃P=C(Me)CO₂Et, toluene, 80 °C, 97% (2 steps); (j) TBSOTf, 2,6-lutidine, CH₂Cl₂, 0 °C, quant.; (k) DIBALH, CH₂Cl₂, -78 °C; (i) Ph₃PCH₃Br, NaHMDS, THF, 0 °C, 94% (2 steps); (o) TBAF, THF, rt; (p) PPTS, CH₂Cl₂, rt, 88% (2 steps); (q) TBSOTf, 2,6-lutidine, CH₂Cl₂, 0 °C; (r) EtSH, Zn(OTf)₂, NaHCO₃, CH₂Cl₂, rt, 85% (2 steps); (s) Me₂C(OMe)₂, PPTS, CH₂Cl₂, rt, 92%; (t) 9-BBN, THF, rt; then aq. NaHCO₃, 30% H₂O₂, rt; (u) SO₃ pyr, Et₃N, DMSO, CH₂Cl₂, 0 °C; (v) MeMgBr, toluene, -78 °C; (w) TPAP, NMO, 4Å MS, CH₂Cl₂, rt, 86% (4 steps); (x) TBAF, THF, rt; (y) ethyl propiolate, NMM, CH₂Cl₂, -78 °C; (c) Ph₃P=CHCO₂Bn, toluene, rt, 95% (2 steps); (d) TBAF, HOAc, THF, rt, 93%; (ee) H₂, Pd/C, MeOH, THF, rt; (ff) 2,4,6-trichlorobenzoyl chloride, Et₃N, THF, toluene, rt; then DMAP, toluene, 110 °C, 99% (2 steps); (gg) KHMDS, (PhO)₂P(O)Cl, THF, HMPA, -78 °C, quant.

Stille反応をCoreyらの条件(Pd(PPh₃)₄/CuCl/LiCl) で行い、ガンビエロール保護体72を収 率66%で得ることに成功した。しかし、73の脱シリル化を種々の反応条件下で試みたが、 C30位のTBS基を除去することができなかった。反応条件を厳しくすると、不安定なトリエ ン側鎖を失った化合物や二重結合の異性化した化合物を含む複雑な混合物を与えるの みであり、ガンビエロールの生成は確認できなかった。

そこで、不安定なトリエン側鎖の導入前にシリル保護基をすべて除去し,水酸基を無保 護のままでStille反応を行うこととした(Scheme 11)。ビニルブロミド72をTHF中フッ化水素・ ピリジン錯体で処理すると、トリオール74を定量的に得ることができた。最後に、46との Stille反応を前述のPd(PPh₃)₄/CuCl/LiCI機媒系を用いて行うことにより、43%の収率でガ ンビエロール(44)を得ることに成功し、ここに最初の全合成を達成した。合成品の¹H,¹³C NMR, HRMSおよびCDスペクトルは天然物と完全に一致し、さらに天然物とほぼ同等の マウス致死毒性(MLD 50~75 μg/kg, ip)を示すことを確認した。これにより、ガンビエロー ルの絶対立体配置を含む全構造を確認することができた。

Scheme 10. Reagents and conditions: (a) **48**, 9-BBN, THF, rt; then **49** (1.4 eq.), aq. Cs₂CO₃, PdCl₂(dppf)· CH₂Cl₂, DMF, 50 °C, 86%; (b) BH₃ THF, THF, rt; then aq. NaOH, 30% H₂O₂, rt, 87%; (c) TPAP, NMO, 4Å MS, CH₂Cl₂, rt, 98%; (d) DDQ, pH 7 buffer, CH₂Cl₂, rt; (e) EtSH, Zn(OTf)₂, CH₂Cl₂, rt; (f) Ac₂O, Et₃N, DMAP, CH₂Cl₂, rt, 75% (3 steps); (g) Ph₃SnH, AIBN, toluene, 110 °C, 95%; (h) NaOMe, MeOH, CH₂Cl₂, rt; (i) TBSCl, imidazole, DMF, 0 °C; (j) TPAP, NMO, 4Å MS, CH₂Cl₂, rt, 69% (3 steps); (k) LiHMDS, TMSCl, Et₃N, THF, -78 °C; (l) Pd(OAc)₂, MeCN, rt; (m) MeMgBr, toluene, -78 °C, 94% (3 steps); (n) TBSOTf, Et₃N, CH₂Cl₂, rt; (o) LiDBB, THF, -78 \rightarrow -45 °C; (p) TBPSCl, Et₃N, DMAP, CH₂Cl₂, rt, 99% (3 steps); (q) TBSOTf, Et₃N, CH₂Cl₂, rt; (r) CSA, MeOH, CH₂Cl₂, 0 °C, 93% (2 steps); (s) TPAP, NMO, 4Å MS, CH₂Cl₂, rt; (t) CBr₄, PPh₃, Et₃N, CH₂Cl₂, 0 °C; (u) *n*Bu₃SnH, Pd(PPh₃)₄, C₆H₆, rt, 82% (3 steps); (v) **46**, Pd(PPh₃)₄, CuCl, LiCl, DMSO/THF (1:1), 60 °C, 66%.

Scheme 11. Reagents and conditions: (a) HF·pyr, THF, rt, quant.; (b) 46, $Pd(PPh_3)_4$, CuCl, LiCl, DMSO/THF (1:1), 60 °C, 43%.

【ガンビエロールの病理組織学所見】今回の全合成により,ガンビエロールの生物活性を 詳細に検討するために必要な試料の調達が可能になった。ガンビエロールがシガテラ中 毒に関与している可能性を考慮し、*in vivo*における生物活性を詳しく評価するために、合 成ガンビエロールをマウスに経口投与し,急性毒性の評価と組織損傷部の電子顕微鏡 観察を行った。

藻類毒の多くは、経口投与による致死量が腹腔内投与の場合の数百~千倍高いこと が知られている。しかし、ガンビエロールの場合、マウスに対する経口投与の最小致死量 が80~150 µg/kgと腹腔内投与による致死量と近い値であり、非常に強い経口毒であるこ とが明らかになった。また,透過型電子顕微鏡による組織病理学的観察の結果から、ガン ビエロールの標的臓器が第一に肺であることがわかった。また、心臓も障害を受けており、 その結果として全身性の鬱血が観察された。

【ガンビエロールの構造活性相関】次に、8環性化合物47を出発物質として種々の構造 改変体を合成し,マウス致死毒性を指標とした構造活性相関を検討した。1位及び6位水 酸基に関して4種類の化合物(75~78)、H環官能基とトリエン側鎖に関して14種類の化 合物(79~92)、合計18種類の構造改変体(Figure 1)を合成し、体重15~17gのddY系雄 マウスに腹腔内投与した際の致死毒性を指標にして活性評価を行った(Table 2)。

6 エピ体75はガンビエロールと同等の致死毒性を示した。また、6 デオキシ体76、

1 *0* メチルエーテル体77、1 デオキシ体78はいずれも天然物に比べると多少活性の低下が見られるものの顕著な致死毒性を示したことから、1位および6位水酸基はガンビエロールの毒性発現にはそれほど関与していないと考えられる。

H環を修飾した化合物では、30 デスメチル体79がガンビエロールの約5分の1の活性 を示したのに対して、28,29 ジヒドロ体80では約120分の1に活性が低下し、化合物81に おいては活性が失われた。これらの結果より、H環に関して30位メチル基は活性発現に必 須の構造ではないが、C28,C29位二重結合は毒性発現に極めて重要な構造要因である ことが明らかとなった。

トリエン側鎖に関しては、末端二重結合を還元した37,38 ジヒドロ体82がガンビエロー ルと同等の活性を示し、共役二重結合に関する幾何異性体83,84では約2分の1、約5分 の1の致死毒性を保持していたのに対して、(32Z) モノエン体85では活性が著しく低下し、 (32E) モノエン体86は致死毒性を示さなかった。従って、共役二重結合、特に(32Z) オ レフィン、の存在が毒性発現に重要であることがわかる。

また、化合物81,87~92がまったく活性を示さないことから、ポリエーテル骨格あるいは トリエン側鎖単独では毒性発現に十分な構造ではないことが明らかとなった。

Figure 1. Structural analogues of gambierol.

Table 1. Minimal lethal dose values	(mg/kg) of compounds	44, 75 ~ 92 in mice.
-------------------------------------	----------------------	----------------------

Compd	Minimal lethal dose	Compd	Minimal lethal dose
	(mg/kg)		(mg/kg)
Gambierol (44)	0.05 0.075	84	0.34
75	0.065	85	1.7
76	0.19	86	>12.9
77	0.44	87	>12.9
78	0.20	88	>7.6
79	0.34	89	>7.6
80	8.0	90	>6.1
81	>11.9	91	>8.2
82	0.065	92	>18.3
83	0.13		

【4】細胞毒性ポリ環状エーテル・ギムノシン Aの全合成

ギムノシン A(93) は赤潮原因渦鞭毛藻*Karenia mikimotoi*から佐竹らにより単離・構造 決定されたポリ環状エーテル化合物であり、従来知られる中で最大の14個のエーテル環 が縮環した構造を持つ。また、これまでのポリ環状エーテル系海産毒と異なり、マウスリン パ腫細胞 P388に対して細胞毒性 (EC₅₀ = 1.3 µg/mL) を示す点で興味が持たれる。し かし、その活性発現機構はまったく不明であり、特異なポリ環状エーテル構造と強力な細 胞毒性との相関を明らかにするためには化学合成による試料供給と構造類縁体の合成 が不可欠である。我々は、鈴木 - 宮浦カップリング反応を基盤とする収束的ポリ環状エー テル合成戦略を駆使することによりギムノシン Aの最初の全合成を達成した。本全合成 により、鈴木 - 宮浦カップリング反応を基盤とする我々の合成方法論がポリ環状エーテル 合成におけるフラグメントカップリングプロセスとして極めて有効であることを実証した。

【合成計画】ギムノシン A(93)の全合成を行う上で、14環性巨大ポリエーテル骨格をいか にして効率的に合成するかが最大のポイントとなる。そこで、2 メチル 2 ブテナール側 鎖を合成の最終段階で導入することとし、14環性ポリエーテル骨格94をABCD環部95と FGHIJKLMN環部96の鈴木 - 宮浦カップリングにより合成することを計画した(Scheme 12)。ABCD環部フラグメント95については、A環を分子内ラジカル環化により構築するこ ととしBCD環96を設定した。一方、FGHIJKLMN環部フラグメント96は、分子の対称性を 考慮して、GHI環部98とKLMN環部99に分割することにより、共通の合成中間体100より 合成することとした。

Scheme 12. Retrosynthetic analysis of gymnocin A.

【ABCD環部の合成】B環エキソエノールエーテル101とD環エノールホスフェート102の鈴 木 - 宮浦カップリングにより化合物103を合成し、続く立体選択的ヒドロホウ素化によりア ルコール104とした(Scheme 13)。さらに、メチルケタールのEt₈SiH/BF₃· OEt₂還元に よりC環を閉環しBCD環部97を合成した。3工程でケトン105へと導き、伊藤 - 三枝法によ リエノンとした後、Luche 還元によりアリルアルコール106を選択的に得た。次いで、 *m*CPBA酸化によりエポキシ化した後、水酸基を酸化してα,β-エポキシケトン107へと誘導 した。宮下らの方法に従ってエポキシドを位置選択的に還元し、生じた水酸基をTHPエ ーテルとして保護し108を得た。ケトンを立体選択的に還元し、β-アクリル酸ユニットの導 入を経て、ヨウ素体109へと導いた。分子内ラジカル環化反応によりA環部テトラヒドロフラン環を構築し、得られたエステル110より111を経て、ABCD環部エキソエノールエーテル95を合成した。

Scheme 13. Reagents and conditions: (a) 101, 9-BBN, THF, rt; then 1 M aq. NaHCO₃, Pd(PPh₃)₄, 102, DMF, 50 °C; (b) BH₃ SMe₂, THF, rt; then H₂O₂, NaOH, 0 °C \rightarrow rt, 54% (two steps); (c) LiDBB, THF, -78 °C; (d) PivCl, pyr, CH₂Cl₂, rt, 85% (two steps); (e) TPAP, NMO, 4Å MS, CH₂Cl₂, rt, 94%; (f) LiHMDS, TMSCl, Et₃N, THF, -78 °C. (g) Pd(OAc)₂, MeCN, rt, 96% (two steps); (h) NaBH₄, CeCl₃ 7H₂O, MeOH, rt, 88%; (i) *m*CPBA, NaHCO₃, CH₂Cl₂, rt, 83%; (j) TPAP, NMO, 4Å MS, CH₂Cl₂, rt, 81%; (k) Na[PhSeB(OEt)₃], AcOH, EtOH, 0 °C \rightarrow rt, quant; (l) DHP, CSA, CH₂Cl₂, rt; (m) L-Selectride, THF, -78 °C; (n) LiAlH₄, THF, 0 °C, 85% (three steps); (o) TsCl, Et₃N, DMAP, CH₂Cl₂, rt, 81%; (p) methyl propiolate, NMM, CH₂Cl₂, 35 °C; (q) NaI, acetone, reflux, 72% (two steps); (r) *n*Bu₃SnH, Et₃B, PhMe, -78 °C, quant; (s) LiAlH₄, THF, 0 °C; (t) KO*t*Bu, BnBr, THF, rt; (u) CSA, MeOH, rt; (v) *p*MeOPhCH(OMe)₂, CSA, CH₂Cl₂, rt, 71% (four steps); (w) TBSOTf, 2,6-lutidine, CH₂Cl₂, rt, 95%; (x) DIBALH, CH₂Cl₂, 0 °C, 93%; (y) I₂, PPh₃, imidazole, THF, rt, 86%; (z) KO*t*Bu, THF, 0 °C, quant.

【GHI環及びKLMN環部の合成】ゲラニオールから5工程で得られる文献既知のエポキ シド112とスルホン113のアニオンとのカップリングを経て合成した7員環エノールホスフェ ート114と、エキソエノールエーテル115を鈴木 - 宮浦反応により連結し、カップリング生成 物116とした(Scheme 14)。116のヒドロホウ素化を経てケトン117とし、メチルケタール化と Et₃SiH/BF₃ OEt₂還元により6員環エーテルを閉環して3環性エーテル118を合成した。さ らに5工程で共通中間体であるヨウ素体100へと導き、塩基処理によりGHI環部エキソエノ ールエーテル98を得た。一方、100より5工程で得られるラクトン119を経てKLMN環部エノ ールホスフェート99を合成した。 【FGHIJKLMN環部の合成】GHI環部エキソエノールエーテル98をヒドロホウ素化して得 られるアルキルボランとKLMN環部エノールホスフェート99をDMF中Cs₂CO₃水溶液と触 媒量のPd(PPh₃)₄の存在下50 で反応させたところ、望むカップリング生成物120を収率 良く得た(Scheme 15)。この120をヒドロホウ素化してアルコール121とし、保護基の変換、 酸化を行ってケトン122に誘導した。EtSH/Zn(OTf)₂処理により混合チオケタール123とし、 ラジカル還元によりGHIJKLMN環部124を合成した。さらに、ベンジル基を除去し、得られ たジオールをRuCh₂(PPh)₃により酸化してFGHIJKLMN環部ラクトン125の合成を完了し た。

Scheme 14. Reagents and conditions: (a) Reagents and conditions: (a) 114, 9-BBN, THF, rt;, then aq. Cs_2CO_3 , 115, $PdCl_2(dppf)$, DMF, 50 °C, 86%; (b) *p*TsOH, MeOH, rt, 84%; (c) Et_3SiH , BF₃ OEt₂, CH_2Cl_2 , rt, quant.; (d) KO*t*Bu, THF, 0 °C, 91%; (e) *n*Bu₃SnH, AIBN, toluene, 100 °C; (f) DDQ, CH_2Cl_2 , pH 7 phosphate buffer, rt, 63% (2 steps); (g) TBSOTf, 2,6-lutidine, CH_2Cl_2 , 0 °C, 94%; (h) H₂, $Pd(OH)_2/C$, MeOH, rt; (i) TPAP, NMO, 4Å MS, CH_2Cl_2 , rt, 61% (2 steps); (j) KHMDS, (PhO)₂P(O)Cl, THF/HMPA, -78 °C.

【ギムノシン Aの全合成】以上のようにしてABCD環部およびFGHIJKLMN環部の合成が 完了したので、鈴木 - 宮浦カップリングによる両フラグメントの連結を行った (Scheme 16)。 まず、エノールトリフラート96をラクトン125よりComins試薬を用いて合成した。エキソエノー ルエーテル95を9 BBNでヒドロホウ素化して得られる*B*-アルキルボランと、エノールトリフ ラート96をCs₂CO₃水溶液とPd(PPh₃)4触媒存在下DMF中室温で反応させたところ、カップ リング反応は円滑に進行し、望むカップリング生成物126を高収率で得ることができた。次 いで、126をヒドロホウ素化し、生じた水酸基をTESエーテルとして保護した後、PMB基を 除去してアルコール127とした。これを酸化して得られるケトン128をシリルエノールエーテ ルへと導いた後、OsO4酸化することによりD環上の17位水酸基を立体選択的に

Scheme 15. Reagents and conditions: (a) 98, 9-BBN, THF, rt; then aq. Cs_2CO_3 , 99, Pd(PPh_3)_4, DMF, 50 °C; (b) BH₃ THF, THF, -20 \rightarrow 0 °C; then aq. NaOH, H₂O₂, rt, 72% from 118; (c) TESOTf, 2,6-lutidine, CH₂Cl₂, 0 °C, 81%; (d) DDQ, CH₂Cl₂, pH 7 phosphate buffer, rt, 90%; (e) TPAP, NMO, 4Å MS, CH₂Cl₂, 91%; (f) EtSH, Zn(OTf)₂, CH₂Cl₂, rt, 87%; (g) *n*Bu₃SnH, AIBN, toluene, 100 °C, 92%; (h) H₂, Pd(OH)₂/C, EtOAc/MeOH, rt; (i) RuCl₂(PPh₃)₃, toluene, 93% (2 steps).

導入することができた。TIPSエーテル129として保護した後、CH₂CL₂中EtSH/Zn(OTf)₂で 処理することにより混合チオケタールの閉環を試みたが、目的とする131はごく低収率でし か得られなかった。種々条件検討の結果、溶媒としてニトロメタンを用いることにより混合 チオケタール131とその脱シリル体130の混合物を収率良く得ることに成功した。130は再 度シリル化することにより容易に131に導くことができた。最後に、131のラジカル還元によ る脱硫を行い、ギムノシン Aの14環性ポリエーテル骨格94の合成を完了した。

最後に、2 メチル 2 ブテナール側鎖の導入を行った。側鎖を導入した後に、TBS基お よびTIPS基を除去することは困難であることがわかったので、94の段階でこれらの保護基 をTES基に変換した。アセトニトリル中70 °CでTBAFを作用させてTBSおよびTIPS基を除 去した後、TESエーテルとして保護し、LiDBBを用いて還元的脱ベンジル化を行い一級 アルコール131とした。次いでアルデヒドへと酸化し、Wittig反応と続くDIBALH還元により アリルアルコール132に導いた。最後に、TES基をTASFで除去し、MnO₂を用いてアリルア ルコール部位を官能基選択的に酸化することにより、ギムノシン A(92)の全合成を達成 した。得られた92の¹H, ¹³C NMRおよびHRMSスペクトルは天然物のものと完全に一致し た。

Scheme 16. Reagents and conditions: (a) KHMDS, THF/HMPA, -78 °C, Comins' reagent, -78 \rightarrow 0 °C, 80%; (b) 95, 9-BBN, THF, rt, then 96, 3 M Cs₂CO₃, Pd(PPh₃)₄, DMF, rt, 81%; (c) BH₃ SMe₂, THF, 0 °C \rightarrow rt, then NaOH, H₂O₂, rt, 75%; (d) TESOTf, 2,6-lutidine, CH₂Cl₂, rt; (e) DDQ, CH₂Cl₂, pH 7 phosphate buffer, 0 °C, 79% (two steps); (f) TPAP, NMO, 4Å MS, CH₂Cl₂, rt, 95%; (g) LiHMDS, TMSCl, Et₃N, THF, -78 °C; (h) OsO₄, NMO, THF-H₂O, rt; (i) TIPSOTf, 2,6-lutidine, CH₂Cl₂, rt, 85% (three steps); (j) EtSH, Zn(OTf)₂, MeNO₂, 0 °C \rightarrow rt, 130: 40%; 131: 38%; (k) TBSOTf, 2,6-lutidine, CH₂Cl₂, rt, 71%; (l) Ph₃SnH, AIBN, toluene, 110 °C, 98%; (m) TBAF, 4Å MS, MeCN, 70 °C; (n) TESOTf, 2,6-lutidine, CH₂Cl₂, rt; (o) LiDBB, THF, -78 °C, 73% (three steps); (p) TPAP, NMO, 4Å MS, CH₂Cl₂, rt; (q) Ph₃P=C(Me)CO₂Me, CH₂Cl₂, rt; (r) DIBALH, CH₂Cl₂, -78 °C, 66% (three steps); (s) TASF, THF-DMF, 0 °C \rightarrow rt; (t) MnO₂, CHCl₃, rt, 91% (two steps).

【5】膜結合分子が形成する複合体の構造と機能

生理活性物質のなかには、細胞膜にイオン透過性チャネルを形成することによって、生理活性 を発現する例が数多く知られている。その代表的化合物であるアンフォテリシン B(AmB, 1)は 発見以来四十数年を経た現在でも最も重要な抗真菌物質の一つであり、感染症治療に広く使用 されている。AmB の抗菌活性は、膜含有ステロールに対する分子認識の違いによって説明され ている。すなわち、AmB は真菌細胞膜に存在するエルゴステロールを認識してチャネル複合体 (会合体)を形成するが、その親和性はヒト細胞膜に含まれるコレステロールに比べ一桁以上高い と言われている。一方で、この親和性の差が一桁程度であるために、投与量によっては重篤な副 作用を起こす危険性も高く、医薬品としての欠点となっている。このように AmB が細胞膜中に形 成する分子複合体の構造は、約30年前に提唱された樽板モデル(図1)が契機となり、多くの科 学者の関心を集め薬理学的および物理化学的研究が行なわれてきたが、その実体は依然として 不明である。これは、このような系に対して、直接的に構造情報を与える NMR やX線結晶解析が 適用できず、UV やCD スペクトル、計算化学といった手法に頼らざるをえないためである。

そこでわれわれは、細胞膜中における有機化合物の分子相互認識のモデルとしてこの AmB

分子複合体に着目し、固体NMRを用いて その複合体構造の解明を目指した。その過程で膜中での低分子自己会合体の構造解析に有効 な方法論の開発することにも重点を置いた。

AmB は膜中において、非会合体と会合体の平衡混合物として存在すると考えられている。 AmB 単量体では非会合状態に平衡が片寄っており、会合体構造を選択的に観測するのは困難 である。そこで、まず AmB の二量体および相互作用するステロールとの連結体を合成し、会合状 態を安定化させることを試みた(図2)。同時に、隣り合う AmB を位置特異的に標識し、固体 NMR によって会合体の構造を解明することを目指すこととした。以下、その詳細を示す。

a.アミノ基同士を連絡

AmB において比較 が可能な官能基は、ア: シル基に限られる。そこ アミノ基同士を連結し; の調製を行った。得ら いて、ヒト血球細胞に べたところ、AmBのEC に対し、アミノ基を有す び4)は0.3 µMと非常|

「に変換された二量体

2はほとんど活性を 同図2.連結によって期待される会合体の安定化

AmB の会合状態は、UV スペクトル上の吸光度低下の程度で見積もることが可能であると報告 されている。リポソーム中でのUV スペクトルを観測したところ、二量体4は AmB に較べて顕著に 小さい吸収を示した(図3)。これは AmB に較べて二量体 4 のヘプタエン部分がリポソーム脂質 膜中でより接近していることを示しており、会合状態が安定化されていると解釈できる。

次に、リン脂質リポソームを調製し、カリウムイオン(K⁺)の流入活性を pH の上昇で観測した (実際にはリン酸の³¹P NMR 化学シフト変化を用いた。図4)。すなわち pH 勾配のあるリポソーム を調製し、このリポソームに対してAmBや二量体を作用させる。イオンチャネルが形成され K⁺が 流入すると、プロトンがリポソーム外に流出し pH 勾配が解消される。これによって、低磁場側に新 たな³¹P NMR ピークを与えることになる (例えば図4の左下のスペクトル; all-or-none 型と呼ばれる

図3.アンフォテリシンBと二量体(4)のリポソーム中におけるUVスペクトル スペクトルのトレースは、AmB(左)では上から順番にメタノール中、AmB-脂質分子数比が、1/200,1/ 二量体(右)では、上から順番にメタノール中、二量体-脂質分子数比が 0.5/200, 0.5/100, 0.5/20

方式のイオン流入が起こっていることを示す)。すなわち、AmB は エルゴステロールを含む LUV (Large Unilamellar Vesicles)リポソームに対してコンダクタンスの比較的大きなイオンチャネルを形 成することができるが、コレステロールおよびステロールなしでは、コンダクタンスおよび K⁺選択性 の低いチャネルが形成される。アミノ基を持ちリンカーの長さを異にする二量体3と4は、エルゴス テロール存在下、同程度のチャネル形成能を示した。これらの作用は AmB よりも少し弱いものの AmBと類似したエルゴステロール選択性を示した。以上のデータから、二量体3 および4 が AmB と機能的・構造的に類似したチャネルをリン脂質膜中に形成していると考えられる。なお、直接連 結した 2 はチャネル形成作用を示さなかった(スペクトルは省略した)。

上記の二量体はリンカー部分が長く、また比較的疎水性が高いため、次に短鎖かつ親水性 の高い酒石酸をリンカーとして用いたN - 連結二量体 (5,6)を同様に調製した。これらの二量 体について上記と同様の活性測定を行った結果、やはりアミノ基を有する 6 において顕著な溶 血活性が認められた。その EC₅₀値は 0.03 μ M であり、上記の二量体をはるかに凌ぐ活性を示し た。また、上記と同様にUVスペクトルや³¹P NMR を用いたチャネル活性試験を行った結果か らも、6 における安定なチャネル形成が示唆された。これは、リンカーが短くなることで、AmB ユ ニット同士がより相互作用しやすくなったためと考えられる。

b. カルボキシル基を連結した二量体

次にわれわれは効率的な NMR 用試料調製のために、合成がより簡便なカルボン酸同士をつ ないだ *C* - 連結二量体を調製してイオン透過作用を調べた。数種の誘導体を調製したが、この うち遊離のアミノ基を有する二量体 7 は非常に強力な溶血性 (EC₅₀ 0.25 μM, AmB は 1.5 μM) を示した。さらに、二量体 7 のイオンチャネル形成作用

図4.アンフォテリシンBと二量体のイオンチャネル活性(³¹PNMRスペクトル) リポソームにK⁺が流入するにつれてH⁺が流出し、内部のpHが上昇する。その結果、右側のシグナル (H₂³¹PO₄⁻由来)が消失し、左側のシグナル(H³¹PO₄²⁻由来)強度が増加する。この左側のシグナルの強 度増加はAmB誘導体のチャネル形成活性によるものである。AmB, Dimersの各スペクトルのピーク強度 がコントロールに較べて低下しているのは、リポソームの破壊もしくはK⁺以外のイオンの透過によるも のと考えられる。AmBのR=-3において左のピーク強度が低下しているのはリポソームの破壊が進ん だためと考えられる。

を³¹P NMR 測定によるリポソーム K⁺流入試験で調べたところ、二量体 7 は AmB や二量体 4 と は異なり、ステロールに依存しないコンダクタンスの小さな非特異的チャネルを形成していると 考えられた(図 5)。したがって、二量体7 が形成するチャネル会合体は、構造はある程度類似し ているものの、チャネル機能は AmB と明確に異なっていることが明らかとなった。

図5.AmB 二量体の³¹P NMR を用いたリポソームに対するイオン透過活性試験 卵黄 PC/ステロール=9/1 or 10/0、脂質/AmB=1000/1、室温で 6h 放置後測定した。AmB 誘導体はリポソーム調 製後に添加した。

c.AmB - ステロール連結体

さらに AmB の抗菌活性の発現に必須であると考えられているステロールを特異的に認識する 機構を調べる目的で連結体を調製し、その活性を調べた。抗菌活性のモデルとして AmB とエル ゴステロール さらに副作用のモデルとしてコレステロールとの連結体を作成した。AmB のアミノ 基とステロールの3位ヒドロキシル基をエチレンカルバメートで連結した誘導体(8 および 10)を調 製し、また別途へキサメチレンカルバメートでつないだ連結体(9 および11)をそれぞれ作成した。

これら4つの化合物についてイオンチャネル活性を³¹P NMR によるリポソーム K⁺流入試験で調 べたところ、2つの顕著な傾向が認められた。図6 に示すように、エルゴステロール連結体(8,9)が コレステロール連結体(10,11)より顕著に強い活性を示し、また、短いリンカーの誘導体(8,10)が 長いもの(9,11)より強い活性を示した。特に8の活性は AmB に匹敵するものであった。これらの 結果は、当初のねらい通り AmB とエルゴステロールの分子認識が連結分子 8 において再現でき たことを示している。さらに、短いリンカーの誘導体で活性が高かったことから、会合体において AmB のアミノ基はステロールの3 位の近傍に位置していることが示唆された。

図6.ステロール連結分子の³¹PNMR を用いたリポソームに対するイオン透過活性試験 卵黄 PC/AmB 誘導体 = 10000/3、室温で 3h 放置後測定。リポソームは AmB 誘導体をあらかじめ混合して調製した。

図7.ステロール連結体のチャネル開確率

また、8と10について単一チャネル電流測定を行った結果、エルゴステロール連結体8におい てチャネルの開確率がコレステロール連結体10より顕著に高いことが明らかとなった(図7)。この 8の開確率はエルゴステロール膜におけるAmBのそれと近い値を示した。また、8の単一チャネ ルのコンダクタンスは28pSであり、AmBのそれと同等かそれ以上の値を示した。この結果からも、 AmBとエルゴステロールの分子認識が連結分子8において再現できたことが明らかとなった。

d. AmBのチャネル形成におけるコレステロール、飽和PCの影響

天然物が形成する膜複合構造の解析法の確立を目指して、固体NMRを用いたAmB-脂 質複合体の構造研究を開始した。その準備として、AmBのイオンチャネル複合体が安定に 形成される脂質組成を調査した。卵黄フォスファチジルコリン(卵黄PC)リポソームを 用いたイオン透過実験を行ったところ、コレステロール、アシル鎖長の異なるフォスファ チジルコリン(PC)の添加効果から、AmBのイオンチャネル活性が脂質二重膜の疎水領 域の長さに依存することが明らかとなった。

図8 AmB チャネル活性のコレステロール濃度依存性

一般的にコレステロールはAmBのイオンチャネルを安定化すると考えられてい た。そこで卵黄PCリポソームのイオン透過実験を用いて、AmBのチャネル活性に対 するコレステロールの作用を確認した。AmBとコレステロール、卵黄PCを予め混合 したCHCl₃-MeOH溶液から形成した薄膜でリポソームを作製したところ、予想に反し てコレステロールが阻害的な働きを示した(図8a)。一方、コレステロールと卵黄 PCのみから作成したリポソーム水溶液に対してAmBを添加した場合は、促進的な 働きがみられた(図8b)。この結果、コレステロールは水中からのAmBの結合を促進 するが、膜中でのチャネル形成は阻害することが判明した。コレステロールはリン脂 質二重膜の物理化学的性質にさまざまな変化をもたらす。膜に結合したAmBに対する 阻害効果は、コレステロールが卵黄PCの膜の厚さを僅かに増したためであると予想 された(表1上段)。そこで膜の厚さの小さな変化がAmBの活性に及ぼす影響を、アシ ル鎖長の異なる飽和PCの添加実験により調査した。C₁₀からC₁₈までの5つの飽和PC を卵黄PCに対して20%添加した影響を試験したところ、C₁₀、C₁₂で大きな促進効果 が、C₁₈で阻害効果がみられた(図9)。AmBの疎水部分は約22 であるが、表1下段 に示したPC二重膜の疎水領域長と比較すると、活性促進効果を有するC₁₀、C₁₂PCは AmBの疎水部分より短い疎水領域の膜を形成することがわかる。このことからAmBとP Cの間には疎水領域長に基づいた分子認識が存在することが明らかとなった。

チャネル活性: C₁₂ > C₁₄ > C₁₆ > C₁₈

図10 AmB-リン脂質連結分子

e. AmB-リン脂質連結分子の作製とそのイオン透過活性

AmBとC₁₂からC₁₈までアシル鎖長の異なる4つのリン脂質を共有結合で繋いだAmB -リン脂質連結分子を調製した(図10)。これらのイオン透過実験を行ったところ、連 結されたリン脂質のアシル鎖長が短いほど大きな活性が見られた。AmB - リン脂質連結分 子では連結したリン脂質を交換不可能な境界脂質としてAmB周囲に固定化できる。連結分 子の活性が連結されたリン脂質の長さに依存することは、AmBに隣接する数分子の脂質 がチャネルの構造と機能に影響を与えていることを示す。

f. REDORを用いたAmB-リン脂質会合体の構造研究

固体 NMR を用いた脂質膜中での構造解析を行うため、¹³C 標識 AmB の生合成的手法による調製を行った。¹³C 標識体の存在下で AmB 生産菌 *Streptomyces nodosus* を培養し、¹³C 標識化された AmB を単離した。その結果、U-¹³C グルコースを取り込ませると、全ての炭素に¹³C が取り込まれ、その平均標識率は50%程度にも達していた。また、 $[3-^{13}C]$ プロピオン酸を取り込ませた場合、標識率は15%程度に低下するものの、予期していた 39、40、41 位の3箇所に位置特異的に¹³C 標識された AmB を得ることができた。AmBの形成するイオンチャネルの推定構造として、細胞膜をAmB-分子で貫通したsingle-lengthチャネルと二分子で貫通したdouble-lengthチャネルが提案されている(図11)。前出のイオン透過実験の結果は、AmBが単分子の長さをもって脂質二重膜を認識していることを示しており、single-lengthチャネルを支持するものであった。われわれはこの推定構造を確認するために固体NMRによる原子間距離測定を試みた。

リン脂質二重膜の表面に存在する³¹PとAmB分子上の複数の¹³Cの相対的な核間距離を 測定すれば、膜表面から近い部分を決定することができ、single-lengthチャネルと double-lengthチャネルの区別が可能となる。核間距離の見積もりは³¹P - ¹³C間の双極子相 互作用の観測を必要とする。固体NMR測定では高い分解能を得るために、試料のマジッ ク角回転(MAS)により双極子相互作用を消去してしまう。スペクトルの分解能を損な うことなく異核間双極子相互作用を観測するにはREDOR法が最適であると考えられた。 [3-¹³C]プロピオン酸を取り込ませたAmBを用いて、DMPCとの混合分散液の¹³C {³¹P}REDORスペクトルを測定した(図14)。

図11 AmB チャネルの推定構造

通常のスペクトルに相当するFull-Echo(図14下)では全ての¹³C NMRが観測されるが、 REDOR差スペクトルでは膜表面に近く、¹³C - ³¹P双極子相互作用の影響を受けた¹³Cの みが見られる。AmBのREDOR差スペクトルでは分子両端の標識部位全て(C39、C 40、C41)が確認されたが、分子中央部に位置する共役二重結合のシグナルは全く見 られなかった。この結果は、single-lengthチャネルに一致する。一方、DMPCより厚い 膜を形成するC₁₈のアシル鎖を持つDSPCを用いて同様の測定を行ったところ、RED ORはAmB分子の片側(C41)でしか観測されなかった(データ省略)。前出のイオン 透過実験で使用した飽和PCの中では、DSPCのみがAmBのチャネル活性を阻害した (図9)。REDORから得られた構造情報と対応させると、single-lengthチャネル形成 の可否がAmBのイオンチャネル活性に重要であると結論付けられる。

図12 AmBのプロピオン酸による標識位置()) 図13 リン脂質の¹³C NMR帰属

図14¹³C標識AmB / DMPCの¹³C³¹{P}REDORスペクトル 上:REDOR差スペクトル、下:Full-Echoスペクトル

以下に本研究における研究成果を要約する。

AmB の会合体構造を安定化すべく連結体の調製を行った。アミノ基を持ち、ある程度の長さのリンカーで連結したN-連結 AmB 二量体(4)は AmBと同レベルのコンダクタンスを持つイオンチャネルを形成し、そのステロール選択性も類似していることを見出した。 酒石酸をリンカーとして用いたN-連結二量体(6)は 4 よりもさらに強い溶血活性を示し、安定なチャネル会合体が形成されていることが示唆された。

カルボキシル基同士を連結した二量体 7 の形成するチャネルは、構造はある程度類似しているものの、チャネル機能は AmB と明確に異なっていることを明らかにした。

テロールを連結した場合は、短いリンカーで繋いだ連結体においてイオンチャネル活性が高く、 さらにエルゴステロール連結体の方がコレステロール連結体より顕著に強い活性を示した。こ のことは、連結体においても AmB のエルゴステロール選択性が再現できたことを示している。 AmB のイオンチャネル形成が、膜中ではコレステロールによって顕著に阻害されることを明ら かにした

AmB のイオンチャネル活性がリン脂質の脂肪酸部分の鎖長に大きく左右されることを示し、その作用が直接的な分子認識に基づいていることを AmB - PC 連結分子を調製することによって実証した。

生合成的に標識した AmB を用いて固体 NMR を測定して原子間距離を見積もった結果、 AmB はリン脂質膜中で single-length チャネルに相当する会合体を形成していることを示した。

これらの結果は、当初の予想通りこれらの連結体によって会合体構造が安定化されることを 示唆しており、固体NMR測定における有用な分子プローブとなると予想される。しかがって、 上記の¹³C標識AmBを連結体へと導くことで、チャネル複合体の構造情報を得ることが可能と なることが明らかとなった。

(2) 研究成果の今後期待される効果

脂質二重膜系での構造研究には固体 NMR の手法が有効であり、グラミシジンなどのペプチド 性イオンチャンネルやロドプシンなどの膜タンパク質の構造研究に威力を発揮しているが、固体 NMR 測定のためには ¹³C や ¹⁵N などの NMR 核種によって試料を標識する必要がある。 AmB や ステロールのような有機化合物の場合、ペプチドやタンパク質とは異なり標識体の調製が困難で あるため、固体 NMR の適用はまだほとんど行われていない。本研究では、上述のようにチャンネ ル複合体構造の安定化のために連結分子を調製し、さらに脂質二重膜中での構造解析を行うた めに固体 NMR の手法を新たに導入した。その際、生合成と化学誘導の併用により多様な標識パ ターンを持った試料調製に成功した。したがって、本研究は天然物化学研究一般に固体 NMR を
導入する先駆的な研究になったと考える。また、本研究において AmB の関わるチャンネル会合体の構造を解明できれば、そのステロール認識機構の詳細に迫ることができ、より副作用の少ない薬剤の設計も可能になると期待される。同時に、本研究の方法論はAmB 以外のポリエンマクロライド抗生物質一般にも応用可能であり、この種の抗生物質における分子作用機構の理解と副作用の低減に大きく寄与できるものと確信する。

天然有機化合物のなかには、ポリエンマクロライドの他にも、膜タンパク質と結合する 海産ポリエーテルなど生体膜中で分子複合体を形成することによって特異な機能を発現す る化合物が数多く知られており、本グループにおいて中心的な研究対象となっている。こ れら有機化合物が膜中で形成する複合体の構造は、基礎科学的にも医薬品開発の面でも興 味深い研究対象であるが、X線解析や溶液NMRといった構造生物学的方法論の適用が困 難であり未解明のままである。本研究で着目した膜複合構造における膜表面から結合分子 までの距離は重要な情報であるが、この距離の測定に本研究では¹³C { ³¹P } REDORを利用 し、顕著な成果を挙げることができた。生体膜の主成分はその極性部分にリン酸を持つた め同位体標識する必要がなく、試料調製が簡便である。これら手法は天然物だけでなく膜 結合性ペプチドや膜たんぱく質の測定にも有利であり、今後、膜結合分子の研究に広く適 用されることが期待される。

¹³C { ³¹ P } R E D O R で得られる 膜 複合体の構造情報

3.2 "微量ポリエーテル化合物の構造決定と構造活性相関に関する研究(安元・ 佐竹グループ)"

(1) 研究内容

Ciguatoxin (CTX)とbrevetoxin (BTX)に代表されるポリエーテル化合物は、エーテル環が梯 子状に連結したポリエーテル構造を有し、単細胞藻類の渦鞭毛藻によって生産される。ポリエー テル化合物は、電位依存性ナトリウムチャンネル(VSSC)等の膜タンパクと結合し、Na イオンや Ca イオンの細胞内流入を増大させ、生体情報解明に関する重要な研究試薬となっている。CTX 類や BTX は魚類や二枚貝に蓄積され、構造的な修飾を受けて多様な類縁体を生じる。本研究は、新 規手法の導入によって微量にしか得られない多数の類縁体の構造の決定の方法論の開発や新 規ポリエーテル化合物の探索・構造決定を行い、ポリエーテル化合物と膜タンパクとの相互作用 を解析することを目的とした。

(2) 研究成果

【1】微量シガトキシン同族体のMS/MS分析による構造決定

仏領ポリネシアで毒化する代表的シガテラ魚ドクウツボとその近縁種の筋肉と内臓、肉 食魚バラフエダイ筋肉、藻食魚ナンヨウブダイ筋肉からシガトキシン(CTX)同族体を抽出・ 精製した。また、毒の第一次生産者である渦鞭毛藻Gambierdiscus toxicusの異なる地域で 採集した3株も抽出に用いた。ウツボ内臓から23画分、ウツボ筋肉から5画分、ナンヨウブ ダイ筋肉から7画分、3株のG. toxicusから14画分の合計53試料を得た。分析に供した試料 の大部分は単一成分ではなく、かつ10μg以下の微量であった。

まず、絶対配置を含めて構造既知のCTX、CTX4A、CTX3Cを用いて開裂イオンを観測した。 Na付加イオンを前駆イオンとしたCTXとCTX4AのMS/MSスペクトルの開裂様式は、硫酸基を有 するイエッソトキシン等のチャージリモートフラグメンテーションと同様に、化学構造を 忠実に反映しており、同族体構造決定のひな形として有用な事が判明した。特にCTXでは、 末端ジオールにNaイオンが固定されてチャージサイトとして機能し、良質なスペクトルを 与えた。

供試した3株のG. toxicus からは、既知のCTX4AとCTX3Cに加えて、あらたに3成分の存在 が認められた。その中の2成分は、CTX4AとCTX3CのM環が開環した成分、M-seco-CTX4Aおよ びM-seco-CTX3Cと同定した。他の1成分は、M-seco-CTX3Cのメチルアセタールと推定した。 A環からL環までの環構成は、すべてCTX4AまたはCTX3Cと同一であった。したがって魚体中 で生じる同族体群の基本骨格も、CTX4AまたはCTX3Cと同一と推定された。

1 CID MS/MS実験におけるciguatoxin類の特徴的解裂イオンと解裂位置

魚から得られた同族体群は、1成分を除いて、B環からL環までの構造が、CTX4Aまた はCTX3Cの環構造を保持している事を示し、代表的な修飾はCTX4AのC1 C4側鎖の酸化、 あるいはA環やM環の酸化または開環である事が明かとなった。CTX4Aを前駆体とする 同族体の側鎖またはA環の構造と同定の根拠となるフラグメントイオンを図2aに示す。 次に、CTX3C同族体でのA環の構造変化と、同定の根拠となるフラグメントイオンを図 2bに示す。L-M環が酸化または開環した場合のフラグメントイオンを図4に示した。CT X3C同族体の中の1成分のみは、L環のC47に水酸基が置換していると推定された。根拠 となったフラグメントイオンを図2cに示した。

図2 CTX類縁体の末端構造変化と解裂イオン

以上の解析から、タヒチで調整された53画分には、20成分の同族体が存在し、その

中の17成分について推定構造を得た。CTX4A同族体群として、CTX4A、M-secoCTX4A、5 2-epi-54-deozyCTX、CTX、52-epi-CTX、54-deoxy-50-hydroxy-CTX、7-oxo-CTX、7-hy droxy-CTX、3-hydroxy-7-oxo-CTXの9成分が同定された。CTX3Cの同族体としては、CT X3C、49-epi-CTX3C、51-hydroxy-CTX3C、3-hydroxy-CTX3C、51-hydroxy-3-oxo-CTX3C、 2,3-dihydroxy-CTX3C、2,3,51-hydroxy-CTX3C、A-seco-51-hydroxy-CTX3Cの8成分が 同定された。構造の修飾は分子両末端の酸化による水酸基やケトンの生成およびスピ ロケタール環の開環であった。マウス毒性がVSSCとの相互作用に基づいていると仮定 すると、末端への極性基の導入(最大で水酸基4、ケトン1)は、VSSCとの結合あるい は膜透過性を阻害しないか、あるいは従来モデルとは異なる作用機構の存在が示唆さ れた。また、食用魚として重要なバラフエダイやナンヨウブダイの筋肉では、51-epi -54-deoxy-CTX、CTX4A、CTX3Cの比率が高く、検出法を策定する上で重要な知見であ った。

【2】赤潮渦鞭毛藻 Karenia (=formerly Gymnodinium) mikimotoiの生産する細胞毒 gy mnocin類の単離・構造決定

赤潮による魚類の大量斃死は国内のみならず世界各地で発生し、沿岸の水産業に壊滅的な打 撃を与え問題となっている。魚類の大量死には、化学物質の関与が考えられているが、魚毒成分 の化学構造が解明された例は、渦鞭毛藻Karenia (Gymnodinium) brevis の生産する毒ブレベ トキシン類とハプト藻 Prymnesium parvaum の生産するプリムネシン類などごく僅かである。国内 の代表的な赤潮形成種である渦鞭毛藻Kareniamikimotoiは、瀬戸内海を中心として西日本各 地で発生し、大量の魚類斃死を引き起こしているが、研究室培養した藻体では強力な魚毒性を 示さず、その魚類斃死機構は、未解明のままであった。我々は、K. mikimotoi の魚毒成分探索 研究の過程で、gymnocinと命名した細胞毒性化合物群を発見し、構造研究を開始した。しかしな がら、gymnocin 類は溶解性に制限があるため、精製時に使用できるカラム、溶媒が制限され、純 粋な試料を得ることが困難であった。また、NMR スペクトルのシグナルが激しく重複している等の理 由によりその構造決定は難航した。これらの問題を解決してgymnocin-A および gymnocin-B の単 離・構造決定に成功した。

図6 Gymnocin-Aの構造

渦鞭毛藻 K. mikimotoi は 1984 年 7 月に和歌山県串本で分離された単藻培養株を用いた。 培養は3L容カブ型フラスコを用いて、T1栄養源添加海水培地2L中、25 で28日間行った。 定常期に達した藻体は、連続遠心分離により収穫した。収穫した藻体を hexane/acetone(1:9) で脱脂した後、80%PrOH で3回抽出した。溶媒留去後、hexane/80% MeOH、CHCl₃/40% MeOH 分配 を行った。Gymnocin 類を含む CHCI3相を DEAE セルロース(CHCI3, MeOH, CHCI3/AcOH(3:1))、 JAIGEL W251 (80% PrOH)、Develosil RPAQUEOUS (29% PrOH)で順次精製を行った。Gymnocin 類は、メタノールやアセトニトリル等の有機容媒にほとんど溶解せず、クロロホルム、プロパノール 等にしか溶解しなかった。そのため、通常の ODS カラムを使用できなかったが、含水プロパノール と RPAQUEOUS カラムを用いたことにより、溶出位置が安定し、精製効率が上昇した。この方法を用 いて、1.5mgのgymnocin-A 3.2mgのgymnocin-Bを蓄積し、構造解析を行った。類縁体成分に 関しては、現在精製法の改良を行っている。構造決定における第2の問題は、分子量の決定であ った。 Gymnocin-Aの ESIMS スペクトルをプロパノール溶媒で測定すると、 m/z 1051 と 2082 にピ ークが観測された。当初、1051 のピークを 2 価イオンピーク、2082 のピークを [M+Na]* ピークと推 定し、分子量 2060の巨大ポリエーテルと考えられた。しかしながら、13C-NMR では、55 本のシグナ ルしか観測されず、分子量が2000を越すことに疑問が持たれた。そこで、gymnocin-Aをクロロホ ルムに溶解して FAB MS を測定し直したところ、 [M+H]*、[M+Na]*のピークがそれぞれ 1029 1051 に観測された。さらにLi⁺付加イオン[M+Li]⁺が m/z 1035 に観測されたことから、 m/z 2082 は 2 分 子会合した[2M+Na]⁺イオンと推定され、gymnocin-A の分子量を 1028 と推定することができた。さ らに、高分解能 FAB MS と NMR スペクトルの解析から分子式を C₅₅H₈₀O₁₈ ([M+Na]⁺ 1051.5244, △ +0.2 mmu) と推定した。Gymnocin-A は、分子内に H-K 環部分の 4 個連続した 6 員環構造と E-I -環とJ-N環部分の6/6/7/6/6員環のくり返し構造を有するため、NMRシグナルの重なり合いが激し く解析が困難であった。構造の確定は、FAB CID MS/MS 法を用いて行った。Gymnocin は、チャー ジリモートフラグメンテーションを生じるに都合の良い極性官能基を持たないため、シガトキシン類 と同様にナトリウム付加イオンを前駆イオンに用いた。ナトリウムイオンは、チャージサイトの役割を 果たし、はしご状ポリエーテル化合物に特有のチャージリモートフラグメンテーションの結果生じた フラグメントイオンが観察された。特に NMR シグナルの重なり合いが激しいために解析が困難であ った H-K 環の開裂に対応するプロダクトイオンが m/z 837、767、711、655、599 に観測され、これら の値が6員環の開裂に特徴的な56および70マスユニット差であったことから4個連続した6員環 構造の確認を行うことができた。ナトリウムイオンは、7員環上の水酸基と近接するエーテル環の酸 素部分に付加したと考えられた。絶対配置は、新 Mosher 法により決定した。

図 4 Gymnocin-Aの MS/MS スペクトルと解裂位置

Gymnocin-Bの¹H-NMR スペクトルは、gymnocin-Bがgymnocin-Aと同様にはしご状ポリエーテル 化合物であることを示唆した。分子末端の共役したアルデヒドや二重結合のシグナルは観測され たが、角間メチルの数やオキシ領域のシグナル形状などは、両者の間で大きく異なっており、 gymnocin-Bの基本骨格は、gymnocin-Aと異なっていることが示唆された。各種 NMR スペクトルの 解析の結果、gymnocin-Bは、分子末端に 2-methyl-2-butenal 側鎖を有し、 5/7/6/6/6/6/7/7/6/7/6/6/6/6/7 員エーテル環が縮環したはしご状ポリエーテル化合物と推定 した。分子末端構造は、gymnocin-Aと一致したが、エーテル環部分の環構成や連続したエーテ ル環の数(15個)は gymnocin-Aと大きく異なっていた。Gymnocin-Bの構造を確認するために、 MS/MS スペクトルを測定したところ、2種の関連プロダクトイオン群が観測される興味深い現象が観 察された。

Gymnocin-Aとgymnocin-Bは、マウスリンパ動肥肥 P388 に対して、それぞれ、1.3µg/ml、1.5 µg/ml で細胞毒性を発現した。構造未決定の gymnocin 類の中には、1.5 ng/ml の強力な毒性 を有する物もあり、gymnocin-Aと gymnocin-Bは、gymnocin 類の中では、弱い活性であった。粗 抽出物で行った魚毒性試験では、溶解性を考慮して界面活性剤に懸濁して行った。その結果、 gymnocin 換算で、淡水魚赤ひれに対して 2ppmで毒性を示した。しかしながらこの値は、ブレベト キシン(PbTx-3)の 250 分の 1 と弱い活性であり、K. mikimotoi による魚類斃死を説明するのに 十分な活性ではなかった。Gymnocin の魚毒性の低さは水に対する溶解性と拡散に起因している ことが考えられ、今後 K. mikimotoi による魚類斃死とギムノシンとの関係および主成分の構造を 【3】ニュージーランド産渦鞭毛藻 Amphidinium carterae の生産する抗カビ・溶血化合物 amphidinol 類縁体の構造と活性

渦鞭毛藻 Amphidinium 属は、多種多様な生理活性物質を生産している。ヒラムシに共生する Amphidiniumsp.からは、細胞毒性物質 amphidinolide 類、沖縄産の A. klebsii からは amphidinol-1(AM1)、神奈川県三浦半島産の A. klebsii からは AM2-AM8(AM7とAM8 は構造未 決定)が単離されている。ニュージーランドで採取された Amphidinium carterae を入手し成分検 索を行ったところ、AM2 および AM4 と同時に、5 成分の新規類縁体 AM9-AM13 を単離した。

AM9 の分子式は、高分解能マススペクトルから $C_{70}H_{118}O_{23}$ と推定され AM3 の分子式と一致した。2 次元 NMR スペクトルの解析から AM9 は AM3 の 20,21 位の水酸基が 18,22 位に置換した水酸基 が位置異性体と推定した。AM10 の分子式は、高分解能マススペクトルから $C_{66}H_{112}O_{23}$ と推定され、 AM4 よりメチレン 2 個少ない構造と推定された。2 次元 NMR スペクトルの解析から AM10 は AM4 の 16,18 位のメチレンが欠落した構造と推定した。AM11 は、分子量 1476、分子式 $C_{71}H_{121}O_{28}Na$ と推定 された。2 次元 NMR スペクトルの解析から、AM11 は AM2 の 1 位水酸基に硫酸エステルが置換した 構造と推定した。同様に、AM12($C_{68}H_{115}O_{26}Na$)とAM13($C_{70}H_{117}O_{26}Na$)は、それぞれ AM4 と AM9 の 1 位 硫酸エステル体と推定した。渦鞭毛藻 Amphidinium も株の遺伝的性質により、生産量、生産物が 異なる事が明かとなった。

図 5 Amphidinol 類の構造

AM2,AM4 に加えて今回単離した 5 成分の抗カビ、溶血、細胞毒性試験を行い、構造の各種活性に与える影響を調査した(Table)。黒カビ Aspergillus niger を用いた抗カビ活性試験では、

AM2, AM4, AM9 は、同程度の活性を示したが、AM11, AM12, AM13 は、活性が3-6 倍以上低下した。溶血活性は、AM2, AM11 が5 倍程度他類縁体より弱い傾向にあった。マウスリンパ腫細胞P388 に対する細胞毒性は、類縁体間で大きな違いが見られなかった。1 位に結合した硫酸エステルは、 amphiidinol 類の抗カビ活性と溶血活性を低下させた。親水性部分の水酸基の結合位置や疎 水性部分の二重結合は、活性にほとんど影響を与えなかったが、炭素鎖の少ないAM10 の溶血活 性は低下した。

	Antifungal acitivity ¹ (µg/disk)	Hemolytic acitivity ² (nM)	Cytotoxicity ³ (µu/ml)
AM2	44	1160	15
AM4	58	207	25
AM9	33	176	37
AM10	154	6530	35
AM11	256	28900	23
AM12	>100	2990	27
AM13	132	2020	33

表1 Amphidinol 類の生物活性

【4】渦鞭毛藻 Ostreopsis siamensis の生産する palytoxin 類縁体 ostreosin-D の構造決 定

渦鞭毛藻 Ostreopsis siamensis は古くから有毒種として知られ、形態や分布域からシガテラ への関与が注目されていた。毒の性状解明は進んでいなかったが、我々は、沖縄県阿嘉島で分 離した 0. siamensis の生産する有毒成分 ostreocin-D の単離に成功し、palytoxin 類縁体で あることを明かとした。Palytoxin は、分子内に水酸基、エーテル環、共役二重結合、アミド、アミ ノ基など多彩な官能基を有し分子量 2700 を越す、世界で最も有名な巨大天然物の一つである。

Ostreocin-D は、分子量が 2736 で palytoxinより 44 マスユニット小さく、メチル基 2 個、水酸 基 1 つが水素に置換された構造と推定された。各種 NMR スペクトルの解析からメチル基の置換位 置は、3,26 位と推定されたが、水酸基の置換位置は、重なり合いが激しく決定する事が出来なか った。そこで、シグナルの重なり合いを解消するために、オゾン分解により二重結合で解裂したフ ラグメント調製を試みた。その結果、フラグメント C,D,F,G を得た。フラグメント D,F,G の¹H-NMR スペ クトルは、palytoxin 由来のフラグメントと一致し、立体を含めて 5 0 位以降の構造が同一である事 が明かとなり、構造変化は、フラグメント C にあると考えられた。フラグメント C の NMR スペクトルを詳 細に検討した所、19位と44位の水酸基が水素に置換し、新たに42位に水酸基が置換した構造 を推定した。

図 6 Palytoxin と ost reocin-D の構造とオゾン分解の解裂位置

Ostreocin-D の構造確認は、CID MS/MS スペクトルによって行った。Ostreocin-D には、チャー ジサイトに適した酸性官能基が存在しないため、末端のアミノ基または水酸基に 2-sulfobenzoate を導入した ostreocin-D 2-sulfobenzamide と N-acetylostreocin-D 2-sulfobenzoate を調製した。両者のMS/MSスペクトルを測定したところ、いずれの化合物におい ても 2-sulfobenzoate をチャージサイトとしたチャージリモートフラグメンテーションにより生じたプ ロダクトイオンが観測された。ostreocin-D 2-sulfobenzamide は 2818 を前駆イオンとして測定 した。プロダクトイオン m/z 2645 と 2588 は C3位のメチル基の脱離を示した。プロダクトイオン m/z 2251, 2221, 2207, and 2178 が観測され、それぞれ、 30, 14, 30 マスユニット差で観測 され、水酸基性メチン、メチレン、水酸基性メチンの連続した解裂パターンから 19 位の水酸基が 水素に置換されたことが示された。プロダクトイオン 1694, 1708, 1738, and 1781 は 43 位 から 46 位の解裂により生じ、水酸基とアセタールの位置の証明となった。 プロダクトイオ ン 1781, 1811, and 1824 は 41 位および 42 位水酸基の 位での解裂により生じたも ので、42 位への水酸基の置換が証明された。以上の事から osterocin-D の構造を 42-hydroxy-3,26-didemethyl-19,44-dideoxypalytoxin と決定した。

Palytoxin は、初め、腔腸動物イワスナギンチャクより単離され、その後魚類、カニ類、紅藻類 等海洋生物に広く分布する事が確認され、高死亡率食中毒クルペオトキシズムやカニ中毒の原 因毒としても重要な化合物である。今回食物連鎖下位の渦鞭毛藻から palytoxin 類縁体を単離 構造決定したことにより、長い間不明のままであった palytoxin の起源生物に関して、その一部 の解明に成功した。

- 3.3 "ポリオール・ペプチド毒グループ(大場グループ)"
- (1) 研究内容及び成果

天然には生理活性を有する化合物がさまざま存在し、これらは生物界の多様な適応 様式を生み出す大きな原動力のひとつとなっている。なかでも、毒(トキシン)は、 その強い生理活性作用とともに著しい標的分子選択性を持つ点で、古くから多くの研 究者に注目されてきた。

毒を産生する生物は、陸・水を問わずあらゆる所に生息している。しかし、ひとた び毒成分に目を移すと、その化学構造はまちまちであり、すなわち毒という形質が生 物進化の過程で独立に何度も獲得されてきたということに気付く。

故・中村英士教授は2つの特異な海洋天然毒、すなわちイモ貝毒「µ-コノトキシン GIIIA」と渦鞭毛藻由来に由来する「ゾーザンテラトキシン」の単離・構造決定を行っ た。我々の研究グループは、これを受け、その分子作用メカニズムを明らかにするた めに以下の研究計画を立てた。

- 1 人工的な分子修飾による、標的タンパクとの相互作用様式の解析 (m-コノトキシン GIIIA)
- 2 構造類縁体分子の探索による、生理活性を誘起する構造の特定(ゾーザンテラト キシン)

以下では、このふたつに関する我々のグループの研究成果について報告する。

<u>【1】イモ貝毒μ-コノトキシン GIIIA の化学修飾と、ナトリウムイオンチャネルへの</u> <u>結合様式の解析</u>

イモ貝(図1)は、その毒矢で獲物とな る魚などを瞬間的に麻痺させることで知ら れる。その毒は極めて強力で、過って刺さ れたヒトが時に死に至ることがあることも ある。

イモ貝の一種 Conus geographus の有する 毒成分のひとつ μ -コノトキシン GIIIA は、 ヒドロキシプロリンを含む 22 アミノ酸から なる強力なペプチド毒で、分子内に 3 つの ジスルフィド結合をもつ。その標的となる 分子は筋肉のナトリウムイオンチャネル (IC₅₀= 0.10 μ M)であり、他のナトリウム イオンチャネルには全く効果を示さない。 我々は、 μ -コノトキシン GIIIA の選択的な ナトリウムイオンチャネルとの結合様式の 解明を目的とし、 μ -コノトキシン GIIIA を 化学的に修飾した分子プローブを幾つか作 成した。

同様の作用を持つ毒分子としてフグ毒テ トロドトキシンが有名であるが、化学修飾

図1 イモ貝

のしやすさを考えると、ペプチド性のμ-コノトキシン GIIIA は研究対象として重要で あろう。我々は、まずこれまでのアミノ酸置換の実験結果から、毒活性に影響の少な いことの分かっている 5 位スレオニンの修飾を試みた。得られたこの誘導体 [Cys⁵]GIIIA は、ナトリウムイオンチャネルへの結合に起因するマウス骨格筋の収縮を 阻害し(IC₅₀=1.9 μM)、修飾による活性の消失は少ないことが分かった。続いて、この 導入された 5 位システインにマレイミドを介して様々な分子タグをカップルさせたと ころ、タグの化学的性質に応じたナトリウムイオンチャネル阻害活性の変化が観察さ れた (Nakamura *et al.*, 2001a)。この結果は、μ-コノトキシン GIIIA とナトリウムイオン チャネルの複合体形成の様式を 反映したものであると考えられ る。とりわけ興味深い例としては、 5位マレイミドにアビジンなど の巨大分子を結合させるとチャ ネル阻害活性は失われるが、スペ

サーによって5位システインか らアビジンまでの距離を延ばす と活性は失われないことが分か った。すなわちこのことは、これ までµ-コノトキシン GIIIA の作 用部位はナトリウムイオンチャ ネルポアの入り口付近だと考え られていたが、実際にはポア入り 口よりも深い所にある可能性を 示唆する。

この研究過程で作成された"スペ サーなしの μ コノトキシン GIIIA アビジン結合 体"は、前述のようにナトリウムイオンチャネル阻害活性が全くなかった(図2)こ とから、 μ -コノトキシン GIIIA の5位に巨大な分子を結合したものは、活性中心部位 の立体構造を保持したまま弱毒化された「理想的な抗原」と看做すことができると考 えた。そこで、我々は5位に BSA を結合させた BSA[Cys⁵]GIIIA を合成し(図3) ウ サギに対し免疫を行ないポリクロ ナル抗体を得ることに成功した(Nakamuraet al., 2002)。果たしてこの得られた抗体は、天然型(活性型) μ -コノトキシン GIIIA を強く 認識した。しかし、失活型であるジスルフィド結合の切れた直鎖型 μ -コノトキシン GIIIA や活性中心と考えられる 13位のアルギニンを別なアミノ酸で置換することで活 性を失った誘導体は認識しなかった。一方、5位がアミノ酸ご置換することで活 体は強く認識した。(ω コトノキシンやテトロドトシンは毒活性はあるが、全く認識し なかった)つまり、得られた抗体は期待した通り活性型 μ -コノトキシン GIIIA のみを 認識したといえる。

生物毒に対する抗体作成は、抗血清や毒の活性機序解明のツールとして重要であるが、その毒性の強さゆえに免疫処理が困難であった。そのため、これまでは毒分子を

ー方、活性中心考えられる 13 位 のアルギニンについても誘導体の 合成による考察を行なった。μ-コ ノトキシン GIIIA の活性にはアル ギニン側鎖のグアニジル基とチャ ネルとの相互作用が重要であると 思われた。そこで、ペプチド主鎖 からグアニジル基までの距離が少

しずつことなる異常アミノ酸をいくつか合成し、ペプチド合成により 13 位にアルギニンア ナログを有する誘導体を作った(図4)。

得られたペプチド群の分子全体の3次元構造が天然型と基本的に変わっていないことは、CDスペクトルのパターンおよび、アミノ酸残基の プロトンに由来する NMR シグナルのケミカルシフト値に大きな変化がないことにより確認している。その結果、グアニジル基の方向性が僅かに異なるだけで活性が著しく損なわれることが分かった。このことは、ナトリウムイオンチャネル阻害活性には13位アミノ酸側鎖のグアニジル基の方向性が非常に重要であることを示唆する(Nakamura *et al.*, 2001b)。

興味深いことに、テトロドトキシンにおいてもグアニジルが活性に重要であると考えられている。μ-コノトキシン GIIIA とテトロドトキシンの活性発現機序に関する類 似性に関係があるのかが今後注目されることになる。

<u>【 2 】渦鞭毛藻 Symbiodinium 属からの巨大ポリ オール分子の探索</u>

単細胞植物プランクトンの渦鞭毛藻(図5) は、シガトキシンやブレベトキシン、マイトト キシンをはじめとする様々なポリエーテル性 の毒分子を産生することで知られているが、そ の他にゾーザンテラトキシンなどのポリオー ル型の毒分子も産することが明かとなってい る。冒頭に述べたように、このゾーザンテラト キシン(図6)は故・中村英士教授により

Symbiodinium 属の渦鞭毛藻(Strain Y-6)から発 図5 渦鞭毛藻 Symbiodinium sp. 見され、構造決定された血管収縮作用を示す巨大分子である。構造中に 62 員環ラクト ンを有し、その特異な構造と活性に興味がもたれた。我々は、こうしたポリエーテル 型の巨大な生理活性化合物が同じ渦鞭毛藻類に他にも見つかるのではないかと考え、 様々な培養株の Symbiodinium 属を探索した所、ゾ ザンテラトキシンと分子量が近く構

図6 ゾーザンテラトキシンA、Bの構造

これら化合物の構造解析は、その分子の巨大さゆえに困難を極めたが、最初に全平 面構造が決定されたのは Strain HA3-5 から単離された分子量 2717 (C₁₂₈H₂₂₂N₂O₅₄S₂)の zooxanthellamide A (図7)であった (Onodera *et al.*, 2003)。この化合物は2個のアミ ド基を境に3つのユニットから構成されており、また直鎖状でエポキシドはなく大局 的にはゾ ザンテラトキシンとは異なる。しかし、スピロ環など部分的には共通する構 造も多いため生合成的な共通性が示唆される。最近、この zooxanthellamide A に類似し た化合物でラクトン環を持ったものが見つかった。これらの化合物のもつ生理活性の 強さにはそれぞれ大きな違いがあり、その構造 活性の相関に興味がもたれるところで ある。現在は、既に単離された類縁化合物の平面構造を決定を進めている。さらに他 の培養株から類縁化合物が見つかるかどうかを探索するとともに、構造 活性相関のさ らなる検討およびターゲット分子の特定を急いでいる。

(2) 研究成果の今後期待される効果

本研究により成功した活性型µ-コノトキシン GIIIA の抗体作成法は、これまで困難で あった他の活性型の毒分子の抗体作成への応用が期待されたため、特許の出願を行な った。また、このような抗体の使用に関する応用可能性として、我々は免疫共沈降に よる毒のターゲット分子の釣り上げを考えている。毒分子は同定されているが、ター ゲット分子が不明なままのものは多い。活性型の毒分子をよく認識する抗体を用いる ことで、さまざまなターゲット分子を釣り上げることが容易に可能かもしれない。

タイムリーにも、2001 年、佐藤主税らによってナトリウムイオンチャネルのX線結 晶解析の論文がネイチャー誌に報告され、その特異な構造に注目が集まった。この構 造は、これまでの想像とは全く異なる、幾つものポアが入り組んだものであった。我々 の開発したµ-コノトキシン GIIIA 誘導体プローブが、その構造の役割を説明する有用 なツールとなることを期待している。

最近、渦鞭毛藻から新たな天然有機化合物を探索しようという気運が再び高まりつ つあるように思われる。これまでの故・中村英士教授と我々の新規ポリオール化合物 群の発見が、そうした流れの先鞭をつけたものと自負している。渦鞭毛藻からの天然 有機化合物の探索が有効なのは、その化合物のバリエーションだけではなく、研究室 規模での培養が可能であるという点にもある。われわれの用いた Symbiodinium 属の渦 鞭毛藻は、本来は海産無脊椎動物に共生しているものが多いが、人工的に単離して培 養することが可能である。様々な共生ホスト生物(シャコ貝、サンゴ、ヒラムシ、イ ソギンチャク、ウミウシなど)から沢山の Symbiodinium 株が単離・培養されてきてい る。

現在われわれは、これらの様々な Symbiodinium 株の系統解析を遺伝子を用いて調べている。5.8SrRNAの ITS 領域、および 18SrRNAの V1 領域の塩基配列をユニバーサルなプライマーを用いて PCR で増幅し、DNA シークエンサーで読む。このデータ群に基づき分子系統解析を行なうことで、それらの類縁関係が推定できる。われわれは最近、進化的に近縁な株同士は似た化合物を作り、遠縁なものは異なる化合物を作る傾向が見られることを見い出した(未発表)。従って、こうした分子系統的な解析により、より効率的に新たな有用化合物を見つける指標になる可能性がある。また、ある有用化合物の類縁化合物を見つけるならば、あらかじめ遺伝子解析により、より近縁なホストを選ぶことによって、より効率良く発見することができるかもしれない。

3.4 "活性評価グループ (中山グループ)"

天然物毒の中には、動物の神経や筋肉など、いわゆる興奮性膜の電位作動性イオンチャ ネルを主要な標的分子としているものが多い。これらの毒は、生体膜上においてチャンネ ルタンパク分子と巨大分子量の超分子複合体を形成する。本グループでの研究は、超分子 複合体が形成される時の分子相互の認識と作用様式を、その高次構造も含め分子レベルで 明らかにすることを目的とした。その達成のため、以下のようにサブテーマを設定して進 めた。

(1)研究内容および成果

I. 光学活性な薬物とそのエナンチオマーのチャネル結合部位:光アフィニティラベル法

よる比較解析

光学活性な薬物 semotiadil のうち、(S)体は心筋 Na チャンネルに結合するが(R)体は L型 Ca チャネルに結合し、それぞれ抗不整脈薬、降圧薬となりうることが知られている が、このような違いが生じる機構やこれらの薬物がそれぞれのチャネル分子のどこに結 合するかを、光アフィニティラベル法を用いて明らかにした。

図1.(S)- および (R)-semotiadil とそれらの光ラベル用アナローグの構造

図 2 . [³H]-D51-4700 での光ラベルへの各種薬物の効果。(A).(*S*)- [³H]-D51-4700 に対する(*S*)- semotiadil と flecanide の効果。 (B).(*R*)-または(*S*)- [³H]-D51-4700 によるNa チャネルの光ラベルへの(*R*)-(lane2, 2')または(*S*)- semotiadil(3, 3')の添加の影響。 (C).(*R*)-または(*S*)- [³H]-D51-4700 によるCa チャネルの光ラベルへの(*R*)-(lane2, 2')または(*S*)- semotiadil(3, 3')の添加の影響。

図3. (S)-[³H]-D51-4700 で光ラベルされた Na チャネル IVS6 フラグメントの同定

図4. (S)-または(R)-[³H]-D51-4700 で光ラベルされた部位の Na チャネルまたは Ca チャネルでの比較

その結果、[1] (S)-[³H]-D51-4700 による Na チャネルの光ラベルが flecanide でも顕著に

抑制されることから、(S)-semotiadil はイオン透過孔の近傍に結合すること(図2)[2]その部位は一次構造上で IVS6を含む 13 kDa のフラグメント(脳 Na チャネルでは 10 kDa) にあることを明らかにした(図3)[3]また、対応する構造部がL型Ca チャネルでは (R)-semotiadil 結合部位であり(図3)、この部位を構成するアミノ酸残基に起因する環境の違いが、Na チャネルとCa チャネルにおける薬物の立体構造選択性の実現に寄与するものと考察した⁽¹⁾。

II. 光アフィニティラベル部位の迅速かつ高感度解析法

光アフィニティラベル法は、(1)標的分子の同定や、(2)上述のIのようにその結合部位 を一次構造上で確定する化学的手法として普遍的に用いられるようになってきたが、(2) の場合、ラベルされたアミノ酸残基の同定まで至る例は殆んどなかった。この実現をめ ざし、薬物結合タンパク HSA を(R)-[³H]-D51-4700 (FNAK)で光ラベルし、ラベルフラグ メントを光ラベルに用いるリガンドを認識する抗体でつりあげ、これを進歩が著しい質 量分析計で解析することにより、迅速・高感度分析法を確立した。

この方法により、ラベルタンパク質の消化物を直接質量分析する方法では得られなかったラベルフラグメントが、高い S/N 比で分析できた(図5では m/Z = 2557, 1322 の2 つ)。

図 5. [[°]H]-FNAK で光ラベルされた HAS フラグメントの MALDI-TOF-MS 分析。

図 6. [³H]-FNAK で光ラベルされた HSA のフラグメントの一つ (*m*/Z = 2557.54)の ESI-MS/MS分析の結果。

また、ESI-MS/MS 分析から、2つのラベルフラグメント中のラベルアミノ酸残基は Lys-414(図6)および Lys-541 であることが同定できた⁽²⁾。

この結果とX線結晶解析されている HSA の立体構造を組み合わせた「ドッキングモデル」

で、FNAKの結合部位は「サイト2」とよばれる薬物結合部位内にあることを示している。 また、FNAK は中鎖脂肪酸・ミリスチン酸の結合とアロステリック相互作用を示す我々の 観測もこの結合モデルとよく対応していた⁽²⁾。 <本研究は"計算化学グループ"のサント リー生有研・石黒正路博士、益田勝吉博士との共同によるものである。 >

図7. 光ラベルで同定された[³H]-FNAK の結合部位と、HSA 3 次元構造(結晶解析による)とのドッキングモデル(上図)。 さらに、3箇所のミリスチン酸結合部位(Myr-3, 4, 5)との相互関係も示した(下図)。

III. Ca²⁺ チャネルの立体構造の解析

L型 Ca チャネルの三次元立体構造を明らかにすべく、段階的に進めた。まず、高純度 に精製した5種のサブユニット(α 1, α 2, β , γ , δ)から成る L型 Ca チャンネル複合体およ び2種のサブユニット(α 1, β)だけから成る複合体を用いて、超低温電子顕微鏡を用い た単分子(single particle)構造解析を行い、各サブユニットの相対的空間配置が図 9の模式図で示される結果を得た⁽³⁾。これは Ca チャネルの三次元立体構造を実測した世 界で初めての例である。<産総研・生物情報解析研究センターの村田和義博士との共同 研究 >

図8. L型 Ca チャネル α1-β複合体単分子の negative stain 電子顕微鏡像。

図 9. 全サブユニットを含む L 型 Ca チャネル単分子の negative stain 電子顕微鏡像。

図 10. 単分子構造解析から得られた L 型 Ca チャネル 立体構造の模式図。

IV. 心筋 ATP 感受性 K⁺チャネルの分子構成

ATP 感受性 K チャネル (K_{ATP})は、細胞内の ATP 濃度を感知してチャネルの開閉を制 御する内向き整流性の K チャネルで、イオンポア部分 (Kir)とスルホニルウレア結合部 (SUR)の2つのサブユニットから成ることは知られていたが、Kir, SUR はそれぞれ数 種の亜種があり、(1)心筋で機能する K_{ATP} がどの亜種サブユニットから成るのか、(2)また それは心筋のミトコンドリアあるいは形質膜のいずれに局在していて機能しているかが 不明であった。我々は Kir, SUR の各亜種を区別できる特異的なペプチド抗体を作製して 調べた結果、(1)心筋で機能する K_{ATP} は、Kir6.2 と SUR2A がそれぞれ4個から成ると考 えられるヘテロ8量体で、(2)それは従来いわれてきたミトコンドリアではなく、形質膜 に局在することを証明した⁽⁴⁾。この結果は、各サブユニット遺伝子をノックアウトした 清野らの実験結果とよく対応した。

図 10. 作製したペプチド抗体は Kir, SUR それぞれの 亜種に特異的に反応する。

V. 脳虚血疾患における神経細胞保護薬創製を志向した神経型 Na⁺チャネルの特異的阻害剤の開発

紺野らによってカリウドバチから単離された新規 Na チャネル毒β-PMTX は、チャネル を開いたままにしておくことで神経毒作用を示す。しかし神経特異的に作用する点は、 本研究目的の一つの条件を充たしている。もう一つの条件は、Na チャネルの開口を阻害 することであり、この2つの要件を満たす誘導体を作出するのが目的である。 まず、β-PMTX の結合部位を同定することで、神経特異的作用の分子基盤を明らかにした。

Wild-Type/Chimera	Amino Acid Sequence	Modification Ratio Mean ± S.D. (Number of Observations)
wild type rBII		$0.26 \pm 0.03 \ (n = 5)$
wild type rH1		0 (n = 4)
BHHH	jun fun fun fun fun	0 (n = 3)
HBBB		$0.43 \pm 0.06 \ (n = 4)$
HHHB		$0.82 \pm 0.06 \ (n = 4)$
BBBH	Man	0 (n = 3)
rH1 chimera 1		$0.73 \pm 0.11 \ (n = 4)$
rH1 chimera 2		0 (n = 3)
rH1 chimera 3		0 (n = 4)

表 I. 脳型と心筋型 Na チャネルのドメイン交換キメラ体とその活性

表 II. 作製した 脳型と心筋型 Na チャネルの点変異体とその活性

図 11. 心筋から可溶化精製した KATP 標品のショ糖密度 勾配遠心。SUR2A と Kir6.2 が複合体を形成する。

解析法は分子生物学的手法によるもので、PMTX 感受性の脳型 Na チャネル(rBII)と非 感受性の心筋型 Na チャネル(rHI)を軸に、両チャネルの4つのドメインを相互に入れ替 えたキメラチャネルで候補部位を絞っていき(表I) 最終的には点変異法によってドメイ ン IV の S3-S4 リンカー部にある Glu-1616 が脳型 Na チャンネルの PMTX 結合に不可欠な役 割を果たしており、心筋型チャネルでは Gln に置換されていることが明らかになった。 < 広島大・医・瀬山一正教授グループとの共同研究 > ⁽⁵⁾。

これをふまえ、 β -PMTX のアナローグを合成し、Na チャネル阻害活性をもつものを探した。

全てのアミノ酸残基をD体に置き換えたアナローグも含めいくつかの誘導体を検討した中 に、

β-PMTX のN 末端から7番目のアミノ酸から成るペプチドP7 がNa チャネル阻害活性をもつ ことを見い出した。その阻害活性は IC₅₀=500 μM で十分に高くはないが、P7 は心筋型 Na チャネルには全く作用せず、脳型チャネルを選択的に阻害する点で目的要件を満たしてい る(図13)。また、β-PMTX と混合して効果を調べた実験では、β-PMTX のチャネル不活性 化延長効果とP7 のチャネル電流阻害効果の両方が観察されたことから(図13左)、その結 合部位はβ-PMTX のそれとは違っていることがわかり⁽⁶⁾、興味深い。これをツールにして、 脳型チャネル選択性を実現する新たな機能部位が探索できよう。

R-I-K-I-G-L-F-D-Q-L-S-R-L-NH₂ R-I-K-I-G-L-F-NH₂

 $(\mathbf{b} - \mathbf{P} \mathbf{M} \mathbf{T} \mathbf{X})$

図 13. β-PMTX のペプチドアナローグ p7 は、β-PMTX とは異なる部位に結合して脳型 Na チャネルを阻害する。 心筋型 Na チャネルには作用しない。

(2)研究成果の今後期待される効果

1. 光アフィニティラベル部位の迅速かつ高感度解析法

光アフィニティラベル法は、(1)標的分子の同定や、(2)研究Iのようにその結合部位を 一次構造上で確定する化学的手法として普遍的に用いられるようになってきたが、(2)の 場合、ラベルされたアミノ酸残基の同定まで至る例は殆んどなかった。本研究により、 ラベル部位をアミノ酸残基レベルで同定する迅速・高感度分析法が確立した。

図 14. 光アフィニティラベルとラベル部位の同定。左下(3) が本研究で確立した迅速・高感度解析法。

生体内標的分子と特異的に結合する内在性リガンドや薬物は多数あり、その結合部位 の解析は新たな疾患治療薬を開発する上でも不可欠である。特に現行の薬物の7割が光 学活性体であることを考えると、本研究Iで示した光学活性薬物の結合部位解析の実績 は意義深い。

本手法の活用によって、リガンドと標的分子の相互作用点が pinpoint で解析され、それを基盤にした新薬の開発研究が進むものと期待される。

2 . Ca²⁺ チャネルの立体構造の解析

これは Ca チャネルの三次元立体構造を実測した世界で初めての例である。我々の発 表後、欧米の3つの研究室から同じ Ca チャネルの単分子解析が報告されたが、基本的 に我々の結果と同等であった。我々はさらに、これら複合体のより高い分解能での解析 も現在、産総研・生物情報解析研究センターの村田和義博士との共同で鋭意進めている。

同精製標品を用いた結晶化もいくつかの条件で試みたが、結晶化条件では不安定で、 未だ成功していない。一種類のサブユニットから成るKチャネルに比べ、特段の工夫が 必要であることを示唆しているのかもしれない。

2001 年、産総研・佐藤らのグループによって電気ウナギ発電器官 Na チャンネルの single particle の解析結果が報告されたが、数種のサブユニットから成るL型Ca チャ ンネル複合体の我々の解析結果は、これと相俟って、膜タンパク質の立体構造解析実現 にさらに一歩近づけた意義は大きい。これらの成果は、今後の研究を活性化することに つながるものであり、実際、毒物や薬物との複合体解析をめざす研究が、我々も含めた 日本のグループによって遂行されようとしている。

3 . 脳虚血疾患における神経細胞保護薬創製を志向した神経型 №⁺チャネルの特異的 阻害剤の開発

新規 Na チャネル毒 PMTX (神経特異的)の結合部位を同定した知見を活かし、その

アナローグで脳型 Na チャネルの特異的ブロッカーを作り上げれば、脳卒中などの急性 神経疾患で起こる神経細胞死保護薬の創製に貢献できる。現行の薬には、このような効 果をもった良いものがないことも、その開発が望まれている要因でもある。

実際にこのような作用をもつ PMTX のペプチドアナローグとして P7 が作出できた。 P7 はその阻害活性の強さから、プロトタイプに位置づけられるものであるが、in vivo の 実験系でも脳-血管関門を通過できること、また脳型 Na チャネルの特異的ブロッカーで あることが示されており、有望である。最近、より強い阻害活性を示すいくつかの P7 アナローグを作ることができたのでより一層の展開を図る。

引用業績

- (1) H. Yoshikawa et al., *Heterocycles*, **59**, 613-622 (2003).
- (2) K. Kawahara et al., *Biochem. J.*, **363**, 223-232 (2002).
- (3) K. Murata et al., Biochem. Biophys. Res. Commun., 282, 284-291 (2001).
- (4) A. Kuniyasu et al., *FEBS Lett.*, **552**, 259-263 (2003).
- (5) E. Kinoshita et al., *Mol. Pharmacol.*, **59**, 1457-1463 (2001).
- (6) S. Yokote et al., in preparation.

- 3.5 "計算化学グループ(石黒グループ)"
- (1) 研究内容及び成果

A.NMRと分子動力学計算による構造解析によるminiANPの立体構造

miniANP(MCHFGGRMDRISCYR-NH₂)は、心房性ナトリウム利尿ペプチド(ANP)の 約半分の大きさで、ANP と同等の活性を有する合成ペプチドである。その配列は、アラニ ンスキャンとファージディスプレイによって最適化されている。1 回膜貫通型レセプター (NPR-A)と結合するとセカンドメッセンジャーのcGMPを産生し、Na利尿作用、血管拡張 作用、レニンーアンジオテンシンーアルドステロン系の抑制作用などの生理作用を引き起 こす。

miniANP は、そのサイズの小ささから構造と活性に強い相関があると考えられる。これまでに、疎水性残基の Phe⁴, Met⁸, Ile¹¹が活性に重要であることが明らかにされているが、それ以上の構造と活性の相関は得られていない。そこで、本研究では NMR と分子動力学計算による構造解析に基づいてアナログペプチドをデザインし、その構造と活性からminiANP のレセプター結合型構造の検討を行った。

レセプターの結合部位の環境が明らかでないため、水中とDMSO中において構造解析

を行った (図1)。水中とDMSO中の両 者に、Gly⁶-Arg⁷-Met⁸-Asp⁹のターン 様構造 (濃い線の部分)が見られる。 溶媒効果の異なる 2 つの溶液におい IIe¹ て共通な構造であるため、我々はこの 構造はレセプター結合型構造でも保 持されているものと仮定した。一方で、 Phe⁴ と Ie¹¹の配置は、水中と DMSO 中とで大きく異なる。水中では離れて いるのに対して、DMSO 中では近い 配置となっている。Phe⁴ と IIe¹¹が活性

に重要であることと、これまでに発表されている ANP 関連ペプチドの溶液構造において、 Phe⁴と Ile¹¹の対応する残基が近い位置にあることから、我々は Phe⁴-Ile¹¹の近接配置も活 性に関連すると仮定した。

次いで、真空中高温での分子動力学計算により、miniANPの構造探索を行い、特に、 溶液構造の特徴に基づく拘束条件をかけることによって、 $Gly^5 \ge Gly^6$ の二面角 ϕ の分布を 調べた。用いた拘束条件は、(1) Gly^6 - Arg^7 -Met⁸-Asp⁹のターン構造と、(2) Phe⁴-Ile¹¹の近 接配置である。拘束条件がない場合、拘束条件(1)の場合、拘束条件(1)+(2)の場合のそ れぞれについて 100 個ずつ構造を発生させた。図 2 は横軸が二面角 ϕ の値で、縦軸が構 造の数を表す。Gly⁵ において、拘束が無い場合は、二面角φが正である構造の数と負で ある構造の数は、ほぼ同数存在するのに対して、拘束条件(1)では負に偏る。一方、拘束 条件(1)+(2)の場合は、正に偏ることが分かった。Gly⁶の場合も同様の傾向が見られる。ゆ

図 2 グリシンの二面角ffの分布

図3 [D-Ala⁵]miniANP**の溶液構造**

えに、 Gly^{6} - Arg^{7} - Met^{8} - Asp^{9} のターン構造 と Phe^{4} - Ile^{11} の近接配置が miniANP の レセプター結合型構造と仮定すると、 Gly^{5} , Gly^{6} の二面角 ϕ が正であることもレ セプター結合型構造の特徴であると予 想される。通常、二面角 ϕ はグリシンを除 く天然のアミノ酸では負の値で、正であ るのは D-アミノ酸に典型的な特徴である。 このことから miniANP の Gly^{5} , Gly^{6} は ファージディスプレイにおいて D-アミノ酸 の代わりに選択されたと推測される。

上述の仮定を証明するために、 [D-Ala⁵]miniANP, [D-Ala⁶]miniANP, [D-Ala⁵,D-Ala⁶]miniANP を作成した。 NPR-A を発現した CHO 細胞における cGMP の産生活性を測定した結果、 miniANP(EC50=458±11pmol)に対する 相対活性(EC50_{analog}/EC50_{miniANP})は 上記の順で 0.38, 8.2, 2.9 となった。これ から D-Ala⁵ は活性を強めるが、D-Ala⁶ は 活性を弱めることが分かった。

構造と活性の相関をより詳細 にするために、アナログペプチドの構造 解析を行った。水中の[D-Ala⁵]minANP では、ターン様構造と Phe⁴-Ile¹¹ の近接

配置が見られる (図 3 左)。Phe⁴-Ile¹¹ の近接配置は水中の miniANP では見られなかった 特徴である。[D-Ala⁵]minANP は、DMSO 中でも同様な構造である (図 3 右)。一方、 [D-Ala⁶]miniANP では、ターン様構造も Phe⁴-Ile¹¹ の近接配置も見られなかった。また、 [D-Ala⁵,D-Ala⁶]miniANP では、Phe⁴と Ile¹¹ は近いが、ターン様構造は 1 残基ずれた構造 であった。したがって、D-Ala⁵ は Phe⁴と Ile¹¹ を近づけるはたらきをし、これがレセプター結 合型構造により近いために活性が上昇したものと結論づけられる。一方、D-Ala⁶ は、活性 に重要なターンを壊すために、活性が低下したと考えられる。Gly⁶はファージディスプレイ により最適な残基として選択されているので、D-Ala⁶置換体の結果を併せると、Gly の小さ なサイズがレセプターとの結合に必要であると示唆される。

ペプチドに導入するための 4-(2'-グ アニジルエチル) プロリン修飾体 (3, 6) の合成は、Scheme 1 に示すように、 4-ヒドロキシプロリン(1, 4) に改良光延 反応[4]を施すことにより行った。固相 合成法により化合物 (3, 6) から、それ ぞれ [(2S,4S)-4-(2'-guanidyl) Pro⁷]miniANP (7) と [(2S,4R)-4-(2'guanidyl)Pro⁷] miniANP(8) を作成し

た。

Scheme 1

NPR-Aを発現したCHO細胞におけるcGMPの産生活性をTable1に示す。アナログペプチド(7,8)は、miniANPとほぼ同等の活性を示した。

	生理活性	相対活性	
Peptide	EC50 (nM)	$EC50_{analog}/EC50_{miniANP}$	
miniANP	5.11 ± 0.29	1	
7	10.80 ± 1.13	2.1	
8	17.04 ± 9.09	3.3	

Table 1 miniANP とアナログペプチドの生理活性

ペプチド(7,8)は、プロリンの5員環に対して、2'-グアニジルエチル基の出る方向が異 なるにも関わらず、ほぼ同等の活性を示した。そこで、構造解析により、2'-グアニジルエ チル基の方向と活性の相関を明らかにすることとした。まずは NMR により水中の構造解 析を行った。miniANP と同様に、柔軟性のために 2 つのアナログペプチドの全体構造は 決定できなかった。しかし、Gly⁶-Asp⁹においてよりはっきりとしたターン構造が観測された。 この結果より、プロリンにより狙った位置にターン構造が固定化されていることが確認され た。ターン構造以外は柔軟であるため、2 つのペプチドの構造は、2'-グアニジルエチル 基の方向だけが異なると考えられる。そこで、InsightII(Accelrys, San Diego, CA)の Search Compare モジュールを用いて、2 つの修飾プロリンの 2'-グアニジルエチル基のコ ンフォメーション解析を行った。Search Compare では、あるボンドを指定した角度刻みに 回転させ、立体障害のないものだけを選択することができる。これらをエネルギー最小化 することによって、安定に存在する全てのコンフォメーションをサンプリングすることができ る。モデルとして Gly-<u>Pro</u>-Met-Asp のターン構造を用いた。プロリンの4位にメチル基だけ を付加したものを用いて、まずはプロリンの5員環のコンフォメーション解析を行った。得ら れた構造にそれぞれ、2'-グアニジルメチル基を付加することによって、目的のペプチド (7,8)のターン構造を作成した。2'-グアニジルエチル基の2 つのメチレンと結合している 3 つのボンドを10°刻みに360°回転させた。ターン構造を形成する水素結合 CO(Gly)-NH(Asp)を固定し、エネルギー最小化を行い、エネルギーと RMSD から等価と 判断されるコンフォメーションを除くと、ペプチド(7)で34個、ペプチド(8)で45 個のコンフ オメーションが得られた。同様な解析を、miniANP のターン構造(Gly-<u>Arg</u>-Met-Asp)のア ルギニンに対して行い、150 個の構造を得た。これより、レセプターと相互作用するグアニ ジル基の位置は、ターン構造から比較的にまっすぐ伸びた狭い領域であることが分かっ た。

本研究では、NMR と分子動力学計算を組み合わせた構造解析に基づいてアナログペ プチドをデザインし、その構造と活性を比較することよって、レセプター結合型構造の特 徴を明らかにすることができた。特に、Phe⁴-Ile¹¹の近接配置、Gly⁶-Arg⁷-Met⁸-Asp⁹のター ン様構造、Gly⁵の二面角φが正の値であることが明らかになった。さらに、miniANP の Arg⁷を4-(2'-グアニジルエチル)プロリンで置換することによって、活性に重要なグアニジ ル基を失うことなく、ターン構造を固定化することができた。また、その空間分布を調べる ことによって、レセプター結合型構造におけるグアニジル基の方向を決定した。4-(2'-グ アニジルエチル)プロリン以外の他の修飾プロリンも比較的に容易に合成することができ る。したがって、本研究の手法は、ターン構造における一般的な構造解析法として用いる ことができる。NPR-A の細胞外領域の結晶構造が決定されたことから、これらの構造と照 らし合わせることによって、レセプターとの相互作用の詳細を明らかにできると期待してい る。

B.パリトキシン NMR スペクトルの完全帰属

パリトキシンはきわめて毒性の高い海産天然有機化合物であり、ウサギに対するLD₅₀ は 25 ng/kg に達する。また、パリトキシンは様々な筋肉の収縮と細胞膜の脱分極を引き起こ す。最近では Na/K-pump に結合して ATPase としての活性を妨害することが明らかとなっ た。パリトキシンは糖鎖やタンパク、核酸などの生体高分子を除く化合物としては 2 番目に 大きい天然有機化合物である。分子式は $C_{129}H_{223}N_3O_{54}$ であり、64 の不斉中心を持って いる。最初、この化合物の構造決定は化学的な分解反応によって得られたフラグメントの 構造を X 線結晶回折や ¹H-NMR を用いて解析することによって明らかにされた。また、そ の絶対立体化学は合成的な手法で決定された。しかし、化合物全体の NMR スペクトル は完全に帰属されていなかった。パリトキシン類縁体の存在も知られており、それら化合

物の構造決定や、さらにターゲットとなるタンパク質との相互作用研究のためにNMR スペ クトルの完全帰属を計画した。実験は17.6テスラ超伝導磁石を備えた NMR 装置を用い、 各種の多次元 FT-NMR スペクトルを収得し完全帰属を達成した。

図 4

サンプルは重メタノール に溶解し、測定はブルカ ー・バイオスピン社製 DMX-750(プロトン共鳴周 波数 750.13MHz) を用いて 行った。 スピン スピン結合 に基づく同種核間の相関 情報を得る為に DQF-COSY、TOCSY を測 定した。異種核間に関して は¹Hと¹³Cの直接結合に よるスピン スピン結合に基 づく HSQC、二結合以上離 れた長距離スピン スピン

結合を検出する HMBC を測定した。シグナルの重なりのためにこれらのスペクトルで解析 不可能な部分については 2D-HSQC-TOCSY、3D-TOCSY-HSQC を測定し ¹³C 化学シフ トの分散を利用して帰属を行った。図4 に帰属に用いた手法と分子構造の関係を示す。 図5に 3D-TOCSY-HSQC のスペクトルを示す。N-アセチルパリトキシンの ¹H および ¹³C の帰属を分子構造とともに記したものを図6と図7に示す。

☑ 6 ¹H-NMR Assignment of *N*-Acetylpalytoxin

2 7 ¹³C-NMR Assignment of *N*-Acetylpalytoxin

С.

膜蛋白

質レセプターGPCR の構造と構造変化およびリガンド認識

GPCR は膜を7回貫通するドメインを有することで共通しており、そのアミノ酸配列の相同 性からいくつかのファミリーに分類される。なかでも光受容膜蛋白質であるロドプシンと高 い相同性を有する GPCR では、それぞれの膜貫通ドメインにおいて保存度の高いアミノ酸 残基が存在し、これらのアミノ酸残基は GPCR の機能に重要な関与をしているとされる。

最近X線結晶構造解析によるロドプシンの詳細な立体構造が明らかにされた。この構造 から GPCR において良く保存されたアミノ酸残基が果たす役割についていくつかの部分に ついて推測が可能となった。特に TM6 に存在する保存度の高い Pro はこのヘリックスに特 徴的な折れ曲がり(キンク)構造をもたらしており、最近の研究から TM6 が活性化に伴って ヘリックスの軸を中心に回転することが示され、このような構造と GPCR の機能との関わりを 解明することは本研究の重要な課題となった。

GPCRの構造変化および機能に関する研究においてはロドプシンについて最も詳細な研究が行われている。ロドプシンは蛋白質であるオプシンの Lys296 に11 - シスレチナールが共有結合で結合してシッフ塩基を形成した膜蛋白質である。クロモフォアの UV 吸収 (\max)は 498nm という長波長領域にシフトしており、ロドプシンに光照射すると、さらに長 波長シフトした UV 吸収を示すきわめて不安定なバソロドプシン (Batho) となり、11 - シス が11 - トランスに変化したオールトランス型のクロモフォアとなる。この高エネルギーで不安定な Batho はクロモフォアとオプシンの熱的な構造変化を伴って、順次ルミロドプシン (Lumi)、メタロドプシン I (Meta—I)、メタロドプシン Ib(Meta—Ib) そしてメタロドプシン II (Meta—II) と呼ばれる中間体へと変化する。一方、より生理的条件下では Lumi はメタロ ドプシン I₃₈₀ (Meta—I₃₈₀) と呼ばれる中間体を経て Meta—II に変化する (図8)。

図8 ロドプシンの光中間体の発生経路

G 蛋白質の活性化は Meta—II において生じるため、ロドプシンに結合した11-シスレチ ナールはインバースアゴニストであり、Meta—II に結合したオールトランスレチナールは フルアゴニストになる。このようにロドプシンにおいては光照射によって同じクロモフォアが インバースアゴニストからフルアゴニストに変化するため、スペクトル変化により構造変化 を観測することができる。しかし、実際にどのように異性化が生じさらに蛋白質の構造変化 が誘導されるかと言う構造的情報は全くなく、このような構造変化についてコンピュータを 用いたシミュレーションを行った。その結果、構造変化についての重要な知見を得て、構 造変化中間体の立体構造モデルを作成することができた。

ロドプシンから Batho へ の変化は早く、200fs 以内 で生じる。このような条件の もとレチナールの異性化に ついて分子動力学法により シミュレートすると、異性化 した二重結合にひずみが 生じ約30度にねじれた構 造となることが示された。こ の不安定なバソロドプシン の構造のひずみを解消す るには、TM3 および TM4 の 構造が変化することが必要

図9 バソロドプシンのクロモフォア(紫色)の構造

であることが示された(図9)。クロモフォアであるレチナールはオプシンの構造変化に伴いβ - イオノン部が6番目のヘリックスから4番目のヘリックスへと向きを変えることが示され

図10 ロドプシン(不活性型、左とメタロドプシン(活性型)の立体構造モデル

ており、このような構造変化に対応した構造がえられた。

さらに、Meta—IIへはそれぞれ、数msの時間で構造的変化する。これは蛋白質の二次 構造の空間的な動きを伴う大きな構造変化に十分な時間である。KhoranaとHubelIらは 6番目の膜貫通へリックス全体が大きく回転し膜蛋白質の構造が相当大きく変化すること を示した。このような構造変化はTM3とTM4の動きに従って、TM6がTM3の方向に動くとい うことから理解できる。この際TM6に存在するキンクしたへリックスが立体的な障害を避ける ために回転が必要になると説明される。このようにして、ロドプシンの活性化モデルを作成 した。このモデルはロドプシンの構造変化を説明するばかりでなく、G蛋白質との相互作 用や活性化の機構についても新しい視点をもたらした。また、活性化状態の生成に必須 な TM6 の回転はレセプターのリガンド認識に重要な構造的特異性を与える。すなわち、 TM6 の回転の前後ではリガンド結合部位における TM6 が関与するアミノ酸残基が異なり、 フルアゴニストとアンタゴニストを認識するアミノ酸残基が異なることが示された。

ロドプシンの光活性化中間体の構造モデルは GPCR がとる多様な構造に対応していると 考えられることから、それぞれの中間体の構造を基にしてレセプターの立体構造モデル を組み立てると、それぞれのリガンドの結合の特異性が検討できる。図10にロドプシンの 結晶構造と Meta—II 構造モデルを比較した図を示す。保存度の非常に高い TM6の Trp 残基の位置の大きな変化はアゴニストとアンタゴニストを認識するアミノ酸残基が異なるこ とを示唆している。

ロドプシンでは、リ ガンド (レチナール) がインバースアゴニ ストからフルアゴニ ストに急速に変化 するため途中の中 間体の活性化につ いての詳細な情報 が得られない。しか し、他の GPCR では インバースアゴニス ト、アンタゴニスト、 パーシャルアゴニス ト、そしてフルアゴ

ニストがそれぞれ異

Ser203 Ser207 Ser204 Phe208 Asn293

図11 不活性型 -アドレナリンレセプターに結合した プロプラノロール(インパースアゴニスト)

なる化合物として存在するため、それぞれが結合するレセプター構造の活性化の程度が

わかる。

アドレナリンβ2 レセプターのインバースアゴニストであるプロプラノロールはレセプター を完全に不活性化する。ロドプシンが吸収する光エネルギーがほとんど Meta—I の生成 に費やされることを考えると、β2 レセプターのインバースアゴニストが結合する構造は Meta—I に近い構造をとっているものと考えられる。図11はプロプラノロールとレセプター の複合体の構造モデルを示した。リガンドのアミンはTM3上で保存された Asp 残基と相互 作用する。一方、ナフチル基はTM5 および 6 の芳香族アミノ酸残基と芳香環クラスターを 形成する。この相互作用はレセプターの不活性構造を安定化する。このように ロドプシンの光活性中間体の構造と GPCR のリガンド結合構造には強い構造的相関があ ることが示された。

(2) 研究成果の今後期待される効果

ANPレセプターは膜を一回貫通ドメインを有し、二量化により活性化される。このような レセプター活性化の機構は多くのレセプターで共通したものである。このため、このレセ プターに作用するリガンドのレセプター結合構造を明らかにできたことは、今後レセプタ ー・リガンドの相互作用をレセプター構造とともに研究する場合に重要な知見となると期 待され、多くのペプチド性リガンドによって活性化されるレセプターのリガンド認識や活性 化の機構を明らかにできるものと期待される。また、新しい非ペプチド性ANP様リガンドの デザインが可能になると期待される。

パリトキシンはカルシウムポンプである膜蛋白質に作用する強力なリガンドである。このト キシンの蛋白質への作用構造の解明にはリガンドの日および¹³Cの帰属が必須である。 パリトキシンのような巨大な非ペプチド性分子の日および¹³Cの帰属自体が困難な課題で あったが、本研究により達成されたことは今後のパリトキシン関連分子の作用構造の詳細 を研究する足がかりとなる。パリトキシンが作用する Na-K ポンプの立体構造モデルなどを 用いることによって、リガンドと膜蛋白質ポンプとの構造活性相関の研究が展開できるもの と期待できる。

GPCRは細胞における情報伝達に関連するレセプターのなかで最も広汎に存在する 膜蛋白質であり、本研究により得られたレセプターの活性化過程における中間体構造モ デルはロドプシンの構造情報伝達機構のみならず、GPCR一般における情報伝達の機 構とリガンド認識機構を明らかにできる大きな手がかりを提供するものである。いままで薬 理学的にのみ評価されてきたリガンドの機能を、対応するレセプターの構造モデルから明 確にできるものと期待される。さらに、ヒトゲノム配列の解明によって得られるGPCRの構 造を持つがそのリガンドの構造が明らかでないオーファンレセプターの機能についても構 造モデルから予測が可能になると予測でき、今後の創薬のための新しいターゲットの発見に結びつくと期待される。
4. 研究実施体制

(1)体制

モデリングと機器分析による複合体構造解析を担当

(2)メンバー表

複合体構造解析グループ

氏名	所属	役職	研究項目	参加時期
橘和夫	東京大学大学院 理学系研究科	教授	研究チームの統括、企画調 製ポリエーテルのデザイン	平成 10 年 12 月 平成15 年 11 月
此木 敬一	同上	助手	複合体形成の評価、 光ラベル化	平成 10 年 12 月 平成12 年 7 月
山垣 亮	同上	助手	複合体の質量分析	平成 11 年 9 月 平成 5 年 11 月
福沢 世傑	同上	助手	複合体形成の評価、 光標識化	平成 12 年 10 月 平成15 年 11 月
小林 好真	同上	大学院生	固体 NMR による複合体構 造解析	平成 11 年 4 月 平成 2 年 3 月
不破 春彦	東京大学大学院 理学系研究科 東京大学大学院 薬学系研究科	大学院生 助手	ポリエーテルの合成	平成 11 年 4 月 平成 5 年 3 月
高倉 宏之	同上	CREST 研究 員	ポリエーテルの合成	平成 11 年 6 月 平成14 年 3 月
クリシュナ モハン	同上	CREST 研究 員	ポリエーテルの合成	平成 11 年 11 月 平成 2 年 10 月
杉山 直幸	同上	大学院生 CREST 研究 員	光標識化タンパク質の解析	平成 15 年 4 月 平成 5 年 11 月
矢野 亜津子	同上	CREST 技術 員	Na ⁺ チャネルの精製と 再構成	平成 11 年 3 月 平成 2 年 11 月 平成 13 年 11 月 平成 5 年 11 月
佐々木 啓孝	同上	大学院生 研究補助員	NMR による複合体形成の 評価	平成 14 年 4 月 平成 5 年 11 月
沼口 紫	同上	研究チーム 事務員	経理事務等の総括、 予算管理	平成 10 年 12 月 平成15 年 11 月
村田 道雄	東京大学大学院 理学系研究科 大阪大学大学院 理学研究科	教授	複合体の構造解析	平成 10 年 12 月 平成 5 年 11 月
大石 徹	大阪大学大学院 理学研究科	助教授	ポリエン連結分子の合成	平成 12 年 4 月 平成15 年 11 月
松森信明	同上	助手	ポリエン連結の作成と 固体 NMR の測定	平成 11 年 4 月 平成 5 年 11 月
松岡 茂	同上	大学院生 CREST 研究 員	アンフォテリシン B 連結分子の調製	平成 11 年 4 月 平成 5 年 11 月
山瀬博司	同上	客員研究員	アンフォテリシン B 連結分子の調製	平成 14 年 4 月 平成 5 年 11 月
蓮台 俊宏	同上	大学院生	ポリエンポリオール分子の 標識、固体 NMR の測定	平成 14 年 4 月 平成 5 年 11 月
山本 恵子	同上	研究補助員	研究データの収集、解析、 文献調査、事務処理補助	平成 11 年 10 月 平成 2 年 8 月

吉田尚子	大阪大学大学院 理学研究科	研究補助員	研究データの収集、 文献調査、事務処理補助	平成 12 年 10 月 平成13 年 1 月
田村麻里子	同上	研究補助員	究補助員 同上	
佐々木 誠	東京大学大学院 理学系研究科 東北大学大学院 生命科学研究科	教授	ポリエーテルのデザイン、 合成	平成 10 年 12 月 平成5 年 11 月
及川雅人	同上	助教授	ポリエーテルの合成	平成 15 年 1 月 平成 5 年 11 月
高倉宏之	同上	CREST 研究 員	ポリエーテルの全合成	平成 14 年 10 月 平成 5 年 11 月

新規ポリエーテル天然物グループ

氏名	所属	役職	研究項目	参加時期
安元 健	日本食品分析 センター 多摩研究所	学術顧問	新規海産ポリエーテル化合 物の探索	平成 10 年 12 月 平成 5 年 11 月
五十嵐友二	同上	試験研究課 課長	ポリエーテル化合物の単離	平成 12 年 4 月 平成 5 年 11 月
佐竹真幸	東北大学大学院 生命科学研究科	助教授	ポリエーテル化合物の 構造決定	平成 10 年 12 月 平成15 年 11 月
村田和也	同上	大学院生	ポリエーテル化合物の 活性測定	平成 10 年 12 月 平成12 年 3 月
大藤克也	同上	大学院生	新規ポリエーテル化合物の 単離	平成 10 年 12 月 平成4 年 3 月
渡辺龍一	同上	大学院生	ナトリウムチャネルに作用 する化合物の単離	平成 14 年 4 月 平成15 年 11 月

ポリオール・ペプチド毒グループ

氏名	所属	役職	研究項目	参加時期
中村英士	名古屋大学大院 生命農学研究科	ポリオールとペプチドのラ 教授 イブラリー作成、相互作用解 析法の開発		平成 10 年 12 月 平成 2 年 10 月
大場裕一	同上	助手 ポリオールとペプチドの ³ 相互作用解析法の開発		平成 12 年 10 月 平成 5 年 11 月
呉 純	同上	大学院生	学院生 蛋白との相互作用の 解析手法の開発	
加藤真由美	同上	大学院生	ポリオールの構造解析	平成 10 年 12 月 平成 3 年 3 月
中村光裕	同上	大学院生	ペプチドの合成、 相互作用の解析	平成 11 年 4 月 平成 5 年 3 月
小野寺健一	同上	大学院生	ポリオールの構造解析	平成 11 年 4 月 平成 5 年 3 月

堀口 健男	北海道大学大学 院理学研究科	助教授	共生藻の分離、 培養株の作成	平成 10 年 12 月 平成 3 年 3 月
佐藤 一紀	三菱化学 生命科学研究所	主任研究員	ペプチドの固相合成	平成 10 年 12 月 平成 3 年 3 月
大泉 康	東北大学大学院 薬学研究科	教授	作用機構	平成 10 年 12 月 平成 3 年 3 月

活性化評価グループ

氏名	所属	役職	研究項目	参加時期
中山(二	熊本大学大学院 医学薬学研究部	教授	Na チャネルへのポリエーテ ル化合物結合と活性化の評 価	平成 10 年 12 月 平成 5 年 11 月
國安 明彦	同上	助教授	Na チャネルの再構成と結合 能の評価、Ca チャネルの精 製	平成 10 年 12 月 平成5 年 3 月
川原 浩一	同上	助手	光ラベル化されたイオンチ ャネルの高感度分析	平成 12 年 4 月 平成 5 年 11 月
大神 信孝	同上	大学院生	Na チャネルの精製	平成 10 年 12 月 平成 3 年 3 月
清水 英介	同上	大学院生	神経 Na ⁺ チャネル特異的に 作用する PMTX 結合部位の 同定	平成 13 年 4 月 平成 5 年 11 月
村田 和義	生物情報解析 研究センター	研究室長	Ca ²⁺ チャネルの二次元結晶 解析	平成 10 年 12 月 平成 5 年 11 月

計算化学グループ

氏名	所属	役職	研究項目	参加時期
石黒 正路	サントリ 生物 有機科学研究所	部長研究員	膜タンパク質複合体 モデリング	平成 10 年 12 月 平成 5 年 11 月
岩下 孝	同上	主任研究員	膜タンパク質複合体の 固体 NMR	平成 10 年 12 月 平成 5 年 11 月
当麻 洋子	同上	研究員	膜タンパク質複合体 モデリング	平成 10 年 12 月 平成 3 年 3 月
紙 圭一郎	同上	研究員	膜タンパク質の NMR によ る構造解析	平成 10 年 12 月 平成4 年 3 月
菅 由紀子	同上	研究員	膜タンパク質リガンドの 構造解析	平成 10 年 12 月 平成4 年 3 月
菅瀬 謙治	同上	研究員	膜タンパク質リガンドの 構造解析	平成 10 年 12 月 平成 5 年 11 月
川田剛	同上	研究員	膜タンパク質の機能解析	平成 10 年 12 月 平成 5 年 11 月
益田 勝吉	同上	研究員	膜タンパク質の質量分析	平成 11 年 4 月 平成 5 年 11 月

5. 究期間中の主な活動

(1) ワークショップ・シンポジウム等

年月日	名称	場所	参加人数	概要
平成 11 年 12 月 10 日	橘チーム ミーティング	東京大学大学院 理学系研究科	15 名	各研究グループにおける研究進 捗状況の報告と討議および今後 の取り進めにつき意識あわせを 実施

(2)招聘した研究者等

なし

6.主な研究成果物、発表等

- (1) 論文発表 (国内 4件、海外 57件)
- A. Morohashi, M. Satake, H. Naoki, H. F. Kaspar, Y. Oshima, T. Yasumoto: "Brevetoxin B4 Isolated from Greenshell Mussels Perna canaliculus, the Major Toxin Involved in Neurotoxic Shellfish Poisoning in New Zealand", *Natural Toxins*, 7, 45-48 (1999).
- M. Inoue, M. Sasaki and K. Tachibana: "A Convergent Synthesis of the *trans*-Fused Hexahydrooxonine Ring System and Reproduction of Conformational Behavior Shown by Ring F of Ciguatoxin", *Tetrahedron*, 55, 10949-10970 (1999).
- M. Sasaki, M. Inoue, K. Takamatsu and K. Tachibana: "Stereocontrolled Synthesis of the JKLM Ring Fragment of Ciguatoxin", J. Org. Chem, 64, 9399-9415 (1999).
- M. Inoue, M. Sasaki, and K. Tachibana: "A Convergent Synthesis of Decacyclic Ciguatoxin Model Containing the F-M Ring Framework", *J. Org. Chem*, 64, 9416-9429 (1999).
- M. Sasaki, H. Fuwa, M. khikawa, and K. Tachibana: "A General Method for Convergent Synthesis of Polycyclic Ethers Based on Suzuki Cross-Coupling; Concise Synthesis of the ABCD Ring System of Ciguatoxin" *Organic Lett.*, 1, 1075-1077 (1999).
- K. Konoki, M. Hashimoto, M. Murata, and K. Tachibana: "Maitotoxin-induced Calcium Influx in Erythrocyte Ghosts and Rat Glioma C6 Cells, and Blockade by Gangliosides and Other Membrane Lipids.", *Chemical Research in Toxicology*, **12**, 12993-1001 (1999).
- 7. M. Ishiguro: "A Mechanism of Primary Photo-activation Reactions of Rhodopsin: Modeling for the Intermediates in the Rhodopsin Photocycle", *J. Am. Chem. Soc.*, **122**, 444-451 (2000).
- 8. M. Sasaki, K. Noguchi, H. Fuwa, and K. Tachibana: "Convergent Synthesis of an HIJK Ring

Model of Ciguatoxin via Suzuki Cross-coupling Reaction", *Tetrahedron Lett.*, **41**, 1425-1428 (2000).

- Y. Kobayashi and K. Tachibana: "NMR Observation on Transbilayer Distribution of *N*-[¹³C]Methylated Chlorpromazine in Asymmetric Lipid Bilayer of Unilammellar Vesicles", *Chem. Lett.*, 4, 302-303 (2000).
- A. Morohashi, M. Satake, Y. Oshima, and T. Yasumoto: "Absolute Configuration at C45 in 45-Hydroxyyessotoxin, a Marine Polyether Toxin Isolated from Shellfish", *Biosci. Biotech. Biochem.*, 64, 1761-1763 (2000).
- M. Sasaki, T. Koike, R. Sakai, and K. Tachibana: "Total Synthesis of (-)-Dysiherbaine, a Novel Neuroexcitotoxic Amino Acid", *Tetrahedron Lett.*, 41, 3923-3926 (2000).
- M. Sasaki, S. Honda, T. Noguchi, H. Takakura, and K. Tachibana: "Palladium-catalyzed Carbonyaltion of Lactone-derived Enol Phosphates: Stereoselective Construction of Functionalized Cyclic Ethers from Lactones", *Synlett*, **2000**, 838-840.
- H. Fuwa, M. Sasaki, and K. Tachibana: "Synthetic Studies on a Marine Polyether Toxin, Gambierol: Stereoselective Synthesis of the FGH Ring System via *B*-Alkyl Suzuki Coupling", *Tetrahedron Lett.*, **41**, 8371-8375 (2000).
- T. Yasumoto, T. Igarashi, A.-M. Legrand, P. Cruchet, M. Chinain, T. Fujita, and H. Naoki: "Structural Elucidation of Ciguatoxin Congeners by Fast-atom Bombardment Tandem Mass Spectroscopy", *J. Am. Chem. Soc.*, **122**, 4988-4989 (2000).
- A. Morohashi, M. Satake, H. Nagai, and T. Yasumoto: "The Absolute Configuration of Gambieric Acids A-D, Potent Antifungal Polyethers Isolated from the Marine Dinoflagellate, *Gambierdiscus toxicus*", *Tetrahedron*, 56, 8995-9001 (2000).
- K. Konoki, N. Sugiyama, M. Murata, K. Tachibana, and Y. Hatanaka: "Development of Biotin-avidin Technology to Investigate Okadaic Acid-promoted Cell Signaling Pathway", *Tetrahedron*, 56, 9003-9014 (2000).
- K. Murata, N. Odahara, A. Kuniyasu, Y. Sato, H. Nakayama, and K. Nagayama: "Asymmetric Arrangement of Auxiliary Subunits of Skeletal Muscle Voltage-gated L-Type Ca²⁺ Channel", *Biochem. Biophys. Res. Commun.*, 282, 284-291 (2001).
- H. Takakura, K. Noguchi, M. Sasaki, and K. Tachibana: "Synthetic Studies on Ciguatoxin: A Highly Convergent Synthesis of the GHIJKLM Ring System via *B*-Alkyl Suzuki Coupling", *Angew. Chem. Int. Ed.*, 40, 1090-1093 (2001).
- 19. 佐々木 誠、井上将行: "ポリエーテル系天然物の化学合成—新しい中員環エーテルの 構築法とエーテル環連結法の開発", 有機合成化学協会誌, **59**, 193-205 (2001).
- 20. E. Kinoshita, H. Maejima, K. Yamaoka, K. Konno, N. Kawai, E. Shimizu, S. Yokote, H.

Nakayama, and I. Seyama: "Novel Wasp Toxin Discriminates between Neuronal and Cardiac Sodium Channels", *Mol. Pharmacol.*, **59**, 1457-1463 (2001).

- T. Yasumoto: "The Chemistry and Biological Function of Natural Marine Toxins", *Chem. Rec.*, 3, 228-242 (2001).
- H. Fuwa, M. Sasaki, and K. Tachibana: "Synthetic Studies on a Marine Polyether Toxin, Gambierol: Stereoselective Synthesis of the EFGH Ring System via *B*-Alkyl Suzuki Coupling", *Tetrahedron*, 57, 3019-3033 (2001).
- 23. R. Sakai, T. Koike, M. Sasaki, K. Shimamoto, C. Oiwa, A. Yano, K. Suzuki, K. Tachibana, and H. Kamiya: "Isolation, Structure Determination and Synthesis of Neodysiherbine A, a New Excitatory Amino Acid from a Marine Sponge", *Org. Lett.*, **3**, 1479-1482 (2001).
- 24. M. Sasaki, T. Shida, and K. Tachibana: "Synthesis and Stereochemical Confirmation of the HI/JK Ring System of Prymnesins, Potent Hemolytic and Ichthyotoxic Glycoside Toxins Isolated from the Red Tide Alga", *Tetrahedron Lett.*, 42, 5725-5728 (2001).
- 25. K. Kawahara, T. Gotoh, S. Oyadomari, A. Kuniyasu, S. Kohsaka, M. Mori, and H. Nakayama: "Nitric Oxide Inhibits the Proliferation of Murine Microglial MG5 Cells by a Mechanism Involving p21 but Independent of p53 and Cyclic Guanosine Monophosphate", *Neurosci. Lett.*, **310**, 89-92 (2001).
- 26. T. Ukena, M. Satake, M. Usami, Y. Oshima, T. Yasumoto, T. Fujita, and Y. Kan: "Structure Elucidation of Ostreocin-D, a Palytoxin Analog, Isolated from the Dinoflagellate *Ostreopsis siamensis*", *Biosci. Biotech. Biochem.*, **65**, 2585-2588 (2001).
- 27. M. Nakamura, Y. Niwa, Y. Ishida, T. Kohno, K. Sato, Y. Oba, and H. Nakamura: "Modification of Arg-13 of i-Conotoxin GIIIA with Piperidinyl-Arg Analogs and Their Relation to the Inhibition of Sodium Channels", *FEBS Lett.*, **503**, 107-110 (2001).
- H. Fuwa, M. Sasaki, and K. Tachibana: "Synthetic Studies toward Gambierol. Convergent Synthesis of the Octacyclic Polyether Core", *Org. Lett.*, 3, 3549-3552 (2001).
- M. Nakamura, Y. Ishida, T. Kohno, K. Sato, Y. Oba, and H. Nakamura: "Synthesis of [Cys⁵]μ-Conotoxin GIIIA and Its Derivatives as a Probe of Na⁺ Channel Analysis", *Biochem. Biophys. Res. Commun.*, **283**, 374-378 (2001).
- 30. M. Sasaki, M. Ishikawa, H. Fuwa, and K. Tachibana: "A General Strategy for the Convergent Synthesis of Fused Polycyclic Ethers via *B*-Alkyl Suzuki Coupling. Synthesis of the ABCD Ring Fragment of Ciguatoxins", *Tetrahedron*, **58**, 1889-1911 (2002).
- N. Matsumori, N. Yamaji, S. Matsuoka, T. Oishi, and M. Murata: "Amphotericin B Covalent Dimmers Forming Sterol-dependent Ion-permeable Membrane Channels", *J. Am. Chem. Soc.*, 124, 4180-4181 (2002).

- 32. K. Kawahara, A. Kuniyasu, K. Masuda, M. Ishiguro, and H. Nakayama: "Efficient Identification of Photolabelled Amino Acid Residues by Combining Immunoaffinity Purification with MS: Revealing the Semotiadilbinding Site and Its Relevance to Binding Sites for Myristates in Domain III of Human Serum Albumin", *Biochem. J.*, 363, 223-232 (2002).
- 33. M. Sasaki, T. Noguchi, and K. Tachibana: "Intramolecular Radical Cyclization—Ring-closing Metathesis Approach to Fused Polycyclic Ethers. Convergent Synthesis and Conformational Analysis of the (E)FGH Ring System of Ciguatoxin", *J. Org. Chem.*, 67, 3301-3310 (2002).
- 34. M. Sasaki, C. Tsukano, and K. Tachibana: "Studies toward the Synthesis of Gymnocin A, a Cytotoxic Polyether: A Highly Convergent Entry to the F-N Ring Fragment", *Org. Lett.*, 4, 1747-1750 (2002).
- 35. N. Yamaji, N. Matsumori, S. Matsuoka, T. Oishi, and M. Murata: "Amphotericin B Dimers with Bisamide Linkage Bearing Powerful Membrane-permeabilizing Activity", *Org. Lett.*, **4**, 2087-2089 (2002).
- H. Takakura, M. Sasaki, S. Honda, and K. Tachibana: "Progress toward the Total Synthesis of Ciguatoxins: A Convergent Synthesis of the FGHIJKLM Ring Fragment", *Org. Lett.*, 4, 2771-2774 (2002).
- H. Fuwa, M. Sasaki, M. Satake, and K. Tachibana: "Total Synthesis of Gambierol", Org. Lett., 4, 2981-2984 (2002).
- H. Fuwa, N. Kainuma, K. Tachibana, and M. Sasaki: "Total Synthesis of (-)-Gambierol", J. Am. Chem. Soc., 124, 14983-14992 (2002).
- M. Satake, M. Shoji, Y. Oshima, H. Naoki, T. Fujita, and T. Yasumoto: "Gymnocin-A, a Cytotoxic Polyether from the Notorious Red Tide Dinoflagellate, *Gymnodinium mikimotoi*", *Tetrahedron Lett.*, 43, 5829-5832 (2002).
- 40. S. Matsuoka and M. Murata: "Cholesterol Markedly Reduces Ion Ppermeability Induced by Membrane-bound Amphotericin B", *Biochim. Biophys. Acta*, **1564**, 429-434 (2002).
- 41. T. Ukena, M. Satake, M. Usami, Y. Oshima, T. Fujita, H. Naoki, and T. Yasumoto: "Structural Confirmation of Ostreocin-D by Application of Negative-ion Fast-atom Bombardment Collision-induced Dissociation Tandem Mass Spectrometric Methods", *Rapid Commun. Mass Spectrom.*, **16**, 2387-2393 (2002).
- 42. T. Hirano, I. T. Lim, D. M. Kim, X.-G. Zheng, K. Yoshihara, Y. Oyama, H. Imai, Y. Shichida, and M. Ishiguro: "Constraints of Opsin Structure on the Ligand-binding Site: Studies with Ring-fused Retinals", *Photochem. Photobiol.*, **76**, 606 (2002).

- 43. M. Nakamura, Y. Oba, T. Mori, K. Sato, Y. Ishida, T. Matsuda, H. Nakamura: "Generation of Polyclonal Antibody against μ-Conotoxin GIIIA using an Immunogen of [Cys⁵]μ-Conotoxin GIIIA Site-specifically Conjugated with Bovine Serum Albumin", *Biochem. Biophys. Res. Commun.*, **290**, 1037-1041 (2002).
- 44. H. Yoshikawa, E. Shimizu, K. Kawahara, A. Kuniyasu, T. Shibano, and H. Nakayama:
 "Photochemical Identification of the Binding Region for (*S*)-Semotiadil on Sodium Channels: Comparison with that for (*R*)-Semotiadil on Skeletal Muscle Calcium Channel", *Heterocycles*, 59, 613-622 (2003).
- 45. M. Ishiguro, T. Hirano, and Y. Oyama: "Modelling of Photointermediates Suggests a Mechanism of the Flip of the β-Ionone Moiety of the Retinylidene Chromophore in the Rhodopsin Photocascade", *ChemBioChem*, **4**, 228-231 (2003).
- 46. S. Matsuoka and M. Murata: "Membrane Permeabilizing Activity of Amphotericin B is Affected by Chain Length of Phosphatidylcholine Added as Minor Constituent", *Biochim. Biophys. Acta*, **1617**, 109-115 (2003).
- 47. 佐々木 誠、不破晴彦: '海産ポリエーテル、ガンビエロールの全合成", 化学と生物, 41, 283-285 (2003).
- M. Izumikawa, M. Murata, K. Tachibana, Y. Ebizuka, and I. Fujii: Cloning of Modular Type I Polykedite Synthase Genes from Salinomycin Producing Strain of *Streptomyces albus*. *Bioorg. Med Chem.*, **11**, 3401-3405 (2003).
- S. Matsuoka, N. Matsumori, and M. Murata: "Amphotericin B Phospholipid Covalent Conjugates: Dependence of Membrane-permeabilizing Activity on Acyl-chain Length", *Org. Biomol. Chem.*, 1, 3882-3884 (2003).
- 50. 不破晴彦、佐々木 誠: "解説:ガンビエロールの全合成 107 段階の軌跡",化学,58, 32-37 (2003).
- 51. 不破晴彦、佐々木 誠: "海産ポリエーテル毒ガンビエロールの全合成", 有機合成化 学協会誌, **61**, 742-751(2003).
- H. Sasaki, S. Fukuzawa, J. Kikuchi, S. Yokoyama, H. Hirota, and K. Tachibana: Cholesterol Doping Induced Enhanced Stability of Bicelles. *Langmuir*, **19**, 9841-9844 (2003).
- 53. H. Sasaki, M. Araki, S. Fukuzawa, and K. Tachibana: The Packing of Lipid Chains Changes the Character of Bacteriorhodopsin Reconstituted in a Model Membrane. *Bioorg. Med. Chem. Lett.*, **13**, 3583-2585 (2003).
- 54. K. Onodera, H. Nakamura, Y. Oba, and M. Ojika: "Zooxanthellamide A, a Novel Polyhydroxy Metabolite from a Marine Dinoflagellate of *Symbiodinium* sp.", *Tetrahedron* **59**, 1067-1071 (2003).

- 55. M. Sasaki, C. Tsukano and K. Tachibana: Synthetic Entry to the ABCD Ring Fragment of Gymnocin-A, a Cytotoxic Polyether. *Tetrahedron Lett.*, **44**, 4351-4354 (2003).
- H. Fuwa, N. Kainuma, M. Satake and M. Sasaki; Synthesis and Biological Evaluation of Gambierol Analogues. *Bioorg. Med. Chem. Lett.*, 13, 2519-2522 (2003).
- 57. M. Sasaki, Y. Iwamuro, J. Nemoto and M. Oikawa: Studies toward the Total Synthesis of Azaspiracids: Synthesis of the FGHI Ring Domain. *Tetrahedron Lett.*, **44**, 6199-6201 (2003).
- 58. C. Tsukano and M. Sasaki: Total Synthesis of Gymnocin-A. J. Am. Chem. Soc., 125, 14294-14295 (2003).
- E. Ito, F. Suzuki-Toyota, K. Toshimori, H. Fuwa, K. Tachibana, M. Satake and M. Sasaki: Pathological Effects on Mice by Gambierol, Possibly One of the Ciguatera Toxins. *Toxicon*, 42, 733-740 (2003).
- (Proceedings)
- M. Nakamura, Y. Niwa, Y. Ishida, T. Kohno, K. Sato, Y. Oba, and H. Nakamura: "Modification to Arg-13 of μ-Conotoxin GIIIA with Piperidyl-Arg Analogs and Their Evaluations", *Peptide Science 2001*, H. Aoyagi, ed., pp. 203-204 (2001).
- M. Nakamura, Y. Oba, K. Sato, Y. Ishida, T. Mastuda, and H. Nakamura: "Generation of Polyclonal Antibody against Peptide Toxin μ-Conotoxin GIIIA", *Peptide Science 2001*, H. Aoyagi, ed., pp. 385-386 (2001).

(2) 口頭発表

招待、口頭講演 (国内 75件、海外 26件)

- 佐々木 誠、野口哲司、橘 和夫(東大院理)
 「シガトキシン FGH 環部の合成と配座解析」
 ・日本化学会第76春季年会(神奈川、1999.3.30)
- 2. 此木敬一、藤本 さやか、高橋匡輝、村田道雄、橘 和夫(東大院理)
 「シガトキシンモデル化合物によるマイトトキシンの作用阻害」
 ・日本化学会第76春季年会(神奈川、1999.3.30)
- 3. 佐々木 誠、不破春彦、石川 誠、橘 和夫(東大院理) 「鈴木クロスカップリング反応を用いる収束的ポリエーテル骨格合成法の開発とシ ガトキシン合成への応用」
 - ・第75回有機合成シンポジウム(東京、1999.6.4)
- 4. 橘 和夫 (東大院理)

^r Construction of Bioassay Protocol to Evaluate Recognition and Activation of

Membrane-bound Proteins by Ladder-shaped Polyether Using Reconstituted Systems. J

・天然物ゴードン会議 (New Hampshire, U.S.A.、1999.7.26)

5. 安元 健、五十嵐 友二 (日本食品分析センター)

「海洋天然物の複雑な構造と微量への挑戦」

• Second Euroconference on Marine Natural Products ($\forall \forall f \forall \cdot \overline{\tau} \cdot \exists \forall \pi \lambda \overline{\tau} \overline{\tau} \lambda^{\circ} d \forall$, 1999.9.19)

佐々木 誠(東大院理)
 「シガトキシンの合成研究 新しい中員環エーテル構築法とエーテル環連結法の開発」

・第18回理研シンポジウム(埼玉、1999.7.16)

7. 佐々木 誠、不破春彦、石川 誠、野口勝彦、橘 和夫(東大院理) 「収束的ポリ環状エーテル合成法の開発とシガトキシン合成への応用」

・日本化学会第77秋季年会(札幌、1999.9.24)

8. 村田道雄、出村哲夫(阪大院理) 「ポリアミン・ATP 複合体の立体配座解析 スペルミンモデル化合物の調製と複合体のNMR」

・日本化学会第78春季年会(千葉、2000.3.29)

- 9. 安元健、五十嵐友二(日本食品分析センター) Anne-Marie Legrand, Philippe Cruchet (ルイ・マラルデ医学研究所)藤田剛司、直木秀夫(サントリー生有研)
 「微量シガトキシン同族体のMS/MS分析による構造決定」
 - ・第41回天然有機化合物討論会(名古屋、1999.10.14)
- 10. 佐々木 誠、不破春彦、石川 誠、橘 和夫(東大院理)
 「鈴木クロスカップリング反応を用いる環状ポリエーテル連結法の開発とシガトキシン合成への応用」

·有機合成化学講習会(東京、1999.10.19)

11. 佐々木 誠(東大院理)

^r Synthetic Studies toward Marine Natural Product Ciguatoxin _J

• Seoul National University-The University of Tokyo Joint Symposium (Seoul, Korea, 1999.11.22)

12. 橘 和夫 (東大院理)

^r Why are Marine Sponges Immune to Cytotoxins which They Accommodates? J

・海洋天然物ゴードン会議(Ventura, California, U.S.A., 2000.2.28)

13. 松森信明、永楽哲嗣、松岡 茂、村田 道雄(阪大院理)

「ポリエン抗生物質と膜脂質分子の相互作用 アンホテリシン B 二量体の調製と分光

学的研究」

- ・日本化学会第78春季年会(千葉、2000.3.29)
- 14. 松岡 茂、松森信明、村田道雄(阪大院理)
 - 「ポリエン抗生物質と膜脂質分子の相互作用 アンホテリシン B リン脂質連結分 子の分光学的研究 」
 - ・日本化学会第78春季年会(千葉、2000.3.29)
- 15. 野口勝彦、佐々木 誠、橘 和夫(東大院理)
 - 「シガトキシンHIJK環部の立体選択的合成」
 - ・日本化学会第78春季年会(千葉、2000.3.29)
- 16. 不破春彦、佐々木 誠、橘 和夫(東大院理)
 - 「海産ポリエーテル化合物ガンビエロールの合成研究」
 - ・日本化学会第78春季年会(千葉、2000.3.29)
- 17. 佐々木 誠(東大院理)
 - 「海産ポリエーテル系天然物の合成研究」
 - ·日本化学会第78春季年会(千葉、2000.3.29)
- 18. 佐々木 誠、石川 誠、橘 和夫(東大院理)
 - 「シガトキシンCTX3CのABCD環部の合成」
 - ・日本化学会第78春季年会(千葉、2000.3.29)
- 19. 中村英士(名大院生命農)
 - 「5位に修飾アミノ酸を含有するµ コノトキシンG A アナローグの合成と活性」
 - ・日本化学会第78春季年会(千葉、2000.3.29)
- 20. 此木敬一、本田香織、橘 和夫(東大院理)村田道雄(阪大院理)

「光親和性標識による超活性海産ポリエーテル毒マイトトキシンの作用標的分子の 探索」

- ・日本化学会第78春季年会(千葉、2000.3.29)
- 21. 佐竹真幸、大島泰克(東北大院農)
 - 「海産ポリエーテル化合物イエッソトキシンの生合成」
 - ・平成 12 年度 日本水産学会春季大会(東京、2000.4.2)
- 22. 山垣 亮、橘 和夫(東大院理/CREST)、中西洋志(工技院・生命)

「ESI / 四重極 / 飛行時間質量分析計を用いた糖鎖の構造分析」

- ・第48回 質量分析総合討論会(名古屋、2000.5.11)
- 23. 杉山直幸、武津勝司、此木敬一、橘和夫(東大院理/CREST)、村田道雄(阪大院理) 「クロイソカイメンの自己防御機構に関わるオカダ酸結合たんぱく質」
 - ・第42回 天然有機化合物討論会(沖縄 2000.11.7)

24. 中村光裕、石田行知、河野俊之、佐藤一紀、中村英士(名大院生命農/三菱化学生命研)

「μ-conotoxin への修飾アミノ酸の導入と活性制御」

- ・第 37 回 ペプチド討論会(名古屋 2000.10.19)
- 25. 杉山直幸、貝原麻美、此木敬一、橘 和夫 (東大院理)

^r Why are Marine Sponges Immune to Cytotoxins which They Accommodate? L

- ・マリンバイオテクノロジー国際会議(Townsville, Australia 2000.9.30)
- 26. 川原浩一、國安明彦、中山 仁(熊大薬) 後藤知巳、親泊政一、森 正敬(熊大医) 高坂 新一(国立神経センター)
- ^r Co-Induction of Argininosuccinate Synthase, Cationic Amino Acid Transporter-2, and Nitric Oxide Synthase in Activated Marine Micoglial Cells J

・第 30 回北米神経科学学会 (New Orleans, USA 2000.11.7)

- 27. 佐々木 誠(東大院理)
 - ^r A New Strategy for Convergent Synthesis of Polyether Natural Products _J
 - ・2000 環太平洋国際化学会議 (Hawaii Honolulu, USA 2000.12.15)

28. 山垣 亮、橘 和夫(東大院理)

^r Structure Analysis of Carbohydrates using an Electrospray Ionization Quardupole Time-of-flight Mass Spectrometry J

・2000 環太平洋国際化学会議(Hawaii Honolulu, USA 2000.12.18)

29. 杉山直幸、武津勝司、此木敬一、橘 和夫(東大院理)

^rOkadaic Acid-binding Proteins form the Sponge *Halichondria okadai*: A Clue to the Molecular Mechanisms of Self-resistance J

・2000 環太平洋国際化学会議(Hawaii Honolulu, USA 2000.12.18)

30. 藤井 勲、海老塚 豊(東大院薬) 藤田剛司、直木英夫(サントリー生有研) 村田 道雄(阪大院理) 泉川美穂、橘 和夫(東大院理)

^r Analyses of Biosynthetic Mechanisms and Cloning of Biosynthethic Genes for Polyethers _J

- ・2000 環太平洋国際化学会議(Hawaii Honolulu, USA 2000.12.18)
- 31. 村田道雄、松森信明、松岡 茂(阪大院理) 此木敬一(東大院理)
 - ^r Molecular Recognition of Membrane Components by Polyether Toxins and Polyenemacrolides J
 - ・2000 環太平洋国際化学会議(Hawaii Honolulu, USA 2000.12.16)
- 32. 松岡 茂、永楽哲嗣、山路奈保子、松森信明、村田道雄(阪大院理)

^r Cross-linked Analogs of Amphotericin B: Bioactivity and Spectroscopic Properties J

・2000 環太平洋国際化学会議(Hawaii Honolulu, USA 2000.12.18)

32. 佐竹真幸、大藤克也、庄司光葉、大島泰克(東北大院農) 安元 健(日本食品分析センター)

^r Unique Structures of Two Polyether Compunds, Azaspiracid and Gymnocin-A J

- ・2000 環太平洋国際化学会議(Hawaii Honolulu, USA 2000.12.19)
- 33. 安元 健(日本食品分析センター)

^r Chemistry in Marine Ecotoxicology _J

・2000 環太平洋国際化学会議(Hawaii Honolulu, USA 2000.12.19)

- 34. 太田小代、佐竹真幸、大島泰克(東北大院農) Lesley Rhodes(コースロン研究所) 「渦鞭毛藻由来の抗カビ成分アンフィジノール-4の構造と生合成」
 - ・日本農芸化学会 2001 年度大会(京都、2001.3.2)
- 35. 志田 健、佐々木 誠、橘 和夫(東大院理) 「プリムネシン HIJK 環部の合成研究」
 - ・日本化学会 第 79 春季年会 (神戸、2001.3.28)
- 36. 不破春彦、佐々木 誠、橘 和夫(東大院理)「ガンビエロールの全合成研究 FGHI 環部の合成 」
 - ・日本化学会第79春季年会(神戸、2001.3.28)
- 37. 高倉宏之、野口勝彦、佐々木 誠、橘 和夫(東大院理)
 「シガトキシンの全合成研究 GHIJKLM 環部の合成 」
 ・日本化学会 第 79 春季年会(神戸、2001.3.28)
- 38. 野口勝彦、高倉宏之、佐々木 誠、橘 和夫(東大院理)「シガトキシンの全合成研究 GHI 環部の合成 」
 - ・日本化学会第79春季年会(神戸、2001.3.28)
- 小池竜樹、佐々木 誠、橘 和夫(東大院理)、酒井隆一、大岩智恵、神 久男(北里大 水産)

「新規興奮性アミノ酸ネオダイシハーベインの構造と全合成」

- ·日本化学会第79春季年会(神戸、2001.3.28)
- 40. 永楽哲嗣、松森信明、村田道雄(阪大院理) 「アンフォテリシン B-ステロール連結分子の生物活性と複合体形成」
 - ・日本化学会 第 79 春季年会 (神戸、2001.3.28)
- 41. 山路 奈保子、松岡 茂、松森信明、村田道雄(阪大院理)、三上 襄(千葉大)
 「アンフォテリシン B 二量体の生物活性と複合体形成」
 ・日本化学会 第 79 春季年会(神戸、2001.3.28)
- 42. 松岡 茂、松森信明、村田道雄(阪大院理) 「アンフォテリシン B-リン脂質連結分子のチャネル様複合体形成」

・日本化学会第79春季年会(神戸、2001.3.28)

43. 蓬台俊宏、松岡 茂、村田 道雄(阪大院理) 「渦鞭毛藻の生産するポリエンポリオール化合物アンフィジノール類の立体配位と炭 素標識パターン」

・日本化学会第79春季年会(神戸、2001.3.28)

44. 庄司光葉、佐竹真幸、大島泰克(東北大院生命科学),直木秀夫(サントリー生有研), 安元健(日本食品分析センター)

「渦鞭毛藻 Gymnodinium mikimotoi の生産する細胞毒ギムノシン - A の構造」

・平成13年度日本水産学会春季大会(藤沢、2001.4.4)

45. 高倉宏之、野口勝彦、本多集吾、佐々木 誠、橘 和夫(東大院理、東北大院生命科学) 「シガトキシンの全合成研究」

・第79回有機合成シンポジウム(東京、2001.6.6)

46. 大藤克也、佐竹真幸、大島泰克(東北大院生命科学) T. MacMahon(Marine Institute) K. James (Cork Institute of Technology) 直木秀夫(サントリー生有研) 安元 健(日 本食品分析センター)

^r Azaspiracid and Its Analogs J

- ・第10回海洋天然物化学国際シンポジウム(名護、2001.6.25)
- 47. 佐竹真幸、大島泰克(東北大院生命科学)

^r Biosynthesis of Yessotoxin, a Marine Polycyclic Ether Compound J

- ・第 10 回海洋天然物化学国際シンポジウム(名護、2001.6.25)
- 48. 佐々木 誠、高倉宏之、本多集悟、橘 和夫(東大院理、東北大院生命科学)

^r Studies toward Total Synthesis of Ciguatoxins _J

・第10回海洋天然物科学国際シンポジウム(名護、2001.6.25)

49. 山垣 亮、橘 和夫(東大院理)

^r Structure Analyses and Ion Abundance in CID-MS/MS Spectra of Isomeric Oligosaccharides Using Quadrupole Time-of-flight Mass Spectrometry: Distinguishing between Isomeric Oligosaccharides J

・第 11 回中国有機マススペクトロメトリーシンポジウム(中国 ウルムチ、2001.8.10)
 50. 橘 和夫(東大院理)

「ポリ環状エーテル海産毒による生体分子認識」

・日本化学会第80秋季年会(千葉、2001.9.20)

51. 佐々木 啓孝、福沢世傑、橘 和夫(東大院理) 横山茂之(理研 GSC) 菊地 淳、廣 田 洋(理研 GSC・横浜市大院総理)

「生体膜モデルとして用いた磁場配向性脂質二重膜とチャネル形成ペプチドの相互作

用」

·日本化学会第80秋季年会(千葉、2001.9.22)

52. 山垣 亮、橘 和夫(東大院理)、中西洋志(生産技術研)

^r Structural Characterization of Glycosylation of Proteins Based on the Ion Abundance in the Mass Spectra J

・ComBio 2001 (International Proteomics Conference 2001) (オーストラリア キャンベラ、2001.10.1)

53. 大藤克也、佐竹真幸、大島泰克(東北大院生命科学) 安元 健(日本食品分析センタ ー) 直木秀夫(サントリー生有研)

「新規二枚貝食中毒"アザスピロ酸中毒"原因毒アザスピロ酸類の構造」

・第43回天然有機化合物討論会(大阪、2001.10.2)

54. 中村光裕、大場裕一、松田 幹、中村英士(名大院生命農) 佐藤一紀(福岡女子大) 石田行知(三菱化学生命研)

「イモ貝由来のペプチド毒 ì-conotoxin GIIIA のポリクローナル抗体の作成とその性 質」

・第 38 回ペプチド討論会(長崎、2001.10.3)

55. 中村光裕、丹羽 由香利、大場裕一、中村英士(名大院生命農) 佐藤一紀(福岡女子 大)、石田行知、河野俊之(三菱化学生命研)

「13 位にピペリジン環を有するアルギニン類縁体を導入した ì-conotoxin GIIIA アナ ローグ活性」

・第 38 回ペプチド討論会(長崎、2001.10.3)

56. 佐々木 誠、高倉宏之、本多集吾、石川 誠、野口勝彦、橘 和夫(東大院理、東北大院生命科学)

「シガトキシンの全合成研究」

- ・第43回天然有機化合物討論会(大阪、2001.10.4)
- 57. 越後谷 玲子、佐竹真幸、大島泰克 (東北大院生命科学)

「渦鞭毛藻 Amphidinium carterae が生産する amphidinol 類縁体の構造決定」

・日本農芸化学会東北支部第134回大会(山形、2001.10.20)

58. 栄喜健介、佐竹真幸、大島泰克(東北大院生命科学)

「海産毒イエッソトキシンの起源と新規類縁体の構造決定」

·日本農芸化学会東北支部第134回大会(山形、2001.10.20)

59. 小野寺 健一、大場裕一、中村英士、小鹿 一(名大院生命農)

「渦鞭毛藻 Symbiodinium sp.より得られた新規ポリオール化合物」

・日本農芸化学会 2002 年度大会(仙台、2002.3.26)

- 60.佐々木 誠、塚野千尋、開沼紀子、橘 和夫(東大院理、東北大院生命科学) 「細胞毒性ポリエーテル、ギムノシン-A の全合成研究」
 - ・日本化学会第81春季年会(東京、2002.3.27)
- 61. 志田 健、佐々木 誠、橘 和夫 (東大院理、東北大院生命科学) 「プリムネシン CDE/FG 環部および HI/JK 環部の合成と立体配座解析」
 - ・日本化学会第81春季年会(東京、2002.3.27)
- 62. 不破春彦、佐々木 誠、橘 和夫 (東大院理、東北大院生命科学)
 - 「ガンビロエールの全合成研究」
 - ·日本化学会第81春季年会(東京、2002.3.27)
- 63. 佐々木 誠、岩室裕子、橘 和夫(東大院理、東北大院生命科学) 「新規貝毒アザスピロ酸 FGHI 環部の合成研究」
 - ・日本化学会第 81 春季年会 (東京、2002.3.27)
- 64. 永楽哲嗣、松森信明、大石 徹、村田道雄(阪大院理)
 「アンフォテリシン B-ステロール連結分子の生物活性とイオンチャネル形成」
 ・日本化学会第 81 春季年会(東京、2002.3.27)
- 65. 山路 奈保子、松岡 茂、松森信明、村田道雄、三上 襄(阪大院理、千葉大真菌医学研)

「アンフォテリシン B 二量体の生物活性とイオンチャネル形成」

- ・日本化学会第81春季年会(東京、2002.3.27)
- 66. 松岡 茂、松森信明、村田道雄(阪大院理)
 「アンフォテリシン B のイオンチャネル形成におけるコレステロールの影響」
 ・日本化学会第 81 春季年会(東京、2002.3.28)
- 67. 原田綾子、福沢世傑、横山茂之、橘 和夫(東大院理) 廣田 洋(理研 GSC) 伏谷 伸 宏(東大院農生科)

「細胞毒性ステロイドアルカイドリテラジン B の標的分子の探索」

- ・日本化学会第81春季年会(東京、2002.3.29)
- 68. 山垣 亮、マリカ・ハムディ、山崎智弘、橘 和夫(東大院理)
 - 「ゲルろ過クロマトグラフィーと MALDI-MS を組み合わせた膜親和性ペプチドの探索」 ・第 50 回日本質量分析学会(京都、2002.5.16)
- 69. 福沢世傑、武内のり子、橘和夫(東大院理) 廣田洋(理研GSC・横浜市大院総理) 「海産アルカロイド、ゾアンタミンの抗骨粗鬆症作用機序に関する研究」
 - ・第6回マリンバイオテクノロジー学会(東京、2002.5.25)
- 70. 佐々木 誠(東北大院生命科学)

「海産ポリエーテル系天然物の全合成研究」

・有機合成化学協会東北・北海道支部講演会(仙台、2002.6.27)

71. 佐々木 誠(東北大院生命科学)

「タンパク質の機能解明のツールとしての海産毒の全合成研究」

・大阪大学蛋白質研究所セミナー「蛋白質と低分子鍵物質の相互作用解明を目指した化 学合成」(大阪、2002.7.25)

72. 福沢 世傑(東大院理)

「海産無脊椎動物由来の生物活性物質の作用機序」

・日本化学会第82秋季年会(大阪、2002.9.27)

73. 武内 のり子、福沢 世傑、橘 和夫(東大院理) 廣田 洋(理研GSC・横浜市大院総理) 「海産アルカロイド、ゾアンタミンの抗骨粗鬆症作用機序に関する研究」

・日本化学会第82秋季年会(大阪、2002.9.28)

74. 庄司光葉、佐竹真幸、大島泰克(東北大院生命科学) 直木秀夫、藤田剛司(サントリー 生有研) 安元 健(日本食品分析センター)

「赤潮渦鞭毛操Gymnodinium mikimotoiの生産する細胞毒ポリエーテル化合物Gymnocin-Aの構造決定」

・第44回天然有機化合物討論会(東京、2002.10.9)

- 75. 松岡 茂、松森信明、山路 奈保子、永楽哲嗣、大石 徹、村田道雄(阪大院理) 「アンフォテリシンB誘導体が生体膜中に形成するチャネル複合体」
 - ・第44回天然有機化合物討論会(東京、2002.10.11)38.
- 76.不破春彦、佐々木 誠、橘 和夫 (東大院理、東北大院生命科学)
 - 「ガンビエロールの全合成」
 - ・第44回天然有機化合物討論会(東京、2002.10.10)
- 77. R. Watanabe, R. Samusawa, M. Satake, and Y. Oshima (東北大院生命科学)

^r Development of Saxitoxin-induced Affinity Gel J

- 10th International Conference of Harmful Algea (Florida, U.S.A., 2002.10.25)
- 78. M. Satake, K. Eiki, Y. Oshima, T. Mitsuya, K. Sekiguchi, K. Koike, and T. Ogata (東北大院生命 科学)

^r Yessotoxin Production by *Protoceratium reticulatum* in Japan and Structures of Its New Analogs J

• 10th International Conference of Harmful Algea (Florida, U.S.A., 2002.10.25)

- 79. 佐々木 啓孝、福沢世傑、橘 和夫(東大院理)、横山茂之(理研 GSC)、菊地 淳、廣田 洋 (理研 GSC・横浜市大院総理)
 - 「膜貫通ペプチド再構成系としてのバイセルに関する研究」
 - ・日本生物物理学会第40回年会(名古屋、2002.11.2)

- 80. 不破春彦、佐々木 誠、橘 和夫 (東大院理、東北大院生命科学)
 - 「ガンビエロールの全合成」
 - ・第82回有機合成シンポジウム(東京、2002.11.5)
- 81. K. Kawahara, S. Oyadomari, T. Gotoh, H. Nakayama, and M. Mori (熊本大薬、熊本大医)
 ^r The Role of ER Stress in Overactivation-induced Apoptosis of Mouse Microglial Cells 」
 32nd Annual Meeting of Society for Neuroscience (Florida, U.S.A., 2002.11.5)
- 82. E. Shimizu, K. Kawahara, M. Kajizono, A. Kuniyasu, and H. Nakayama (熊本大薬)
 - ^r Role of a Scavenger Receptor CD36 for β-Amyloid Peptide Clearance in Microglia _J
 - 32nd Annual Meeting of Society for Neuroscience (Florida, U.S.A., 2002.11.6)
- 83. 高倉宏之(東北大院生命科学、CREST)
 - 「シガトキシンの全合成研究」

・有機化学仙台シンポジム - 第 17 回有機合成化学若手研究者の仙台セミナー(仙台、 2002.11.28)

84. 杉山直幸、此木敬一、橘 和夫(東大院理)

「クロイソカイメン由来オカダ酸結合タンパク質の光親和性標識部位」

- ·日本化学会第83春季年会(東京、2003.3.19)
- 85. 佐々木 啓孝、福沢世傑、橘 和夫(東大院理)

「バイセルに再構成したバクテリオロドプシンに関する研究」

- ·日本化学会第83春季年会(東京、2003.3.19)
- 86. 矢野 亜津子、橘 和夫 (東大院理、CREST)
 - 「ブレベトキシンと電位依存性ナトリウムチャネルの相互作用の定量的解析」
 - ・日本化学会第83春季年会(東京、2003.3.20)
- 87. 志田 健、佐々木 誠、橘 和夫 (東大院理、東北大院生命科学)

「プリムネシン CDE/FG 環部モデルの合成研究」

88. 塚野千尋、佐々木 誠、橘 和夫 (東大院理、東北大院生命科学)

「細胞毒性ポリエーテル ギムノシン-A の全合成研究」

・日本化学会第83春季年会(東京、2003.3.20)

- 89. 開沼紀子、不破春彦、橘 和夫(東大院理) 佐竹真幸、佐々木 誠(東北大院生命科学) 「ガンビエロール構造類縁体の合成と構造活性相関」
 - ・日本化学会第83春季年会(東京、2003.3.20)
- 90. 蓮台俊宏、松岡 茂、松森 信明、村田道雄(阪大院理)

「渦鞭毛藻由来天然物アンフィジノール類の脂質二重膜中における会合体構造の NMR 解析」

 [・]日本化学会第83春季年会(東京、2003.3.20)

·日本化学会第83春季年会(東京、2003.3.20)

91. 矢里仁資、佐々木 智子、村田道雄、大石 徹(阪大院理)

「複反応点ワンポット合成法による梯子状ポリエーテル化合物の合成研究」

・日本化学会第83春季年会(東京、2003.3.20)

92. 池内宏貴、松森信明、植野嘉之、松岡 茂、村田道雄(阪大院理)

「固体 NMR 測定を目指した同位体標識アンフォテリシン B の生合成的調製」

·日本化学会第83春季年会(東京、2003.3.20)

93. 植野嘉之、大石 徹、池内宏貴、松森信明、村田道雄(阪大院理)

「アンフォテリシン B のイオンチャネル活性に対するフッ化ステロールの効果」

- ・日本化学会第83春季年会(東京、2003.3.20)
- 94. 土川博史、大石 徹(阪大院理)、吉田 学、森澤正昭(東大院理臨海実験所) 「ユウレイボヤ精子活性化誘引物質(SAAF)の全合成」

·日本化学会第83春季年会(東京、2003.3.20)

95. 相根岳志、出村哲夫、丸吉京介、松森信明、村田道雄(阪大院理)

「同位体標識によるスペルミジン-ATP 複合体の立体配座解析(2)-固体 NMR-」

- ・日本化学会第83春季年会(東京、2003.3.20)
- 96. M. Sasaki (東北大院生命科学)

^r Total Synthesis of Gambierol J

- · Japan-U.S. Seminar on Bioorganic Marine Chemistry (Awaji, Japan, 2003.6.25)
- 97. K. Tachibana (東大院理)
 - ^r Synthesis and Molecular Recognition of Policyclic Ethereall Marine Toxins ₁
 - · Japan-U.S. Seminar on Bioorganic Marine Chemistry (Awaji, Japan, 2003.6.26)
- 98. M. Sasaki (東北大院生命科学)
 - ^r Total Synthesis of Polycyclic Ethers based on *B*-Alkyl Suzuki-Miyaura Coupling J

• 2nd Japanese-Sino Symposium on Organic Chemistry for Young Scientists (Shima-gun, Japan, 2003.9.24)

- 99. 小野寺健一、中村英士、大場裕一、小鹿 一、Feng Jueb、大泉康(名大院生命農、東北 大院薬)
 - 「海洋渦鞭毛藻Symbiodinium sp.より得られた新規ポリオール化合物Zooxanthellamide類」
 - ・第45回天然有機化合物討論会(京都、2003.10.7)
- 100. 塚野千尋、佐々木 誠 (東北大院生命)

「細胞毒性ポリ環状エーテル、ギムノシン A の全合成研究」

- ・第84回有機合成シンポジウム(東京、2003.11.18)
- 101. M. Sasaki (東北大院生命科学)

^r Total Synthesis of Polycyclic Ethers Based on B-Alkyl Suzuki-Miyaura Coupling J

 1st Interanational COE Syposium "Giant Polyether Natural Products-Isolation and Synthesis-」 (仙台、2003.11.26)

ポスター発表 (国内 1件、海外 0件)

- 1. 佐々木啓孝 福沢世傑 橘 和夫(東大院理)
 - 「DSCを用いたバイセル溶液の観測」
 - ·日本生物物理学会第41回年会 (新潟、2003.9.23)

(3)特許出願(国内 6件、海外 1件)

国内

- 佐々木 誠、橘 和夫、不破春彦
 「新規な環状ポリエーテル化合物の合成法」 科学技術振興事業団(2000.1.20)
- 2. 中村英士
 「受容体認識部位が保存された生理活性物質の非活性化誘導体及びその使用方法」科学技 術振興事業団(2000.3.10)
- 3. 佐々木 誠、不破春彦、橘 和夫
 「環状ポリエーテル化合物の製造方法」 科学技術振興事業団 (2000.6.16)
- 4. 村田道雄、松森信明「ポリエンマクロライド系抗生物質の多量体」 科学技術振興事業団 (2000.8.24)
- 5. 此木敬一、杉山直幸、橘和夫
 「オカダ酸に結合する新規タンパク質およびその遺伝子」科学技術振興事業団 (2000.9.28)
- 6. 佐々木 誠・不破春彦・橘 和夫

「ガンビエロールの製造方法」 科学技術振興事業団(2002.7.12)

海外

1. 佐々木 誠、不破春彦、橘 和夫

「Method for Producing Cyclic Polyether Compounds」科学技術振興事業団 (2002.2.19)

(4)新聞報道等

新聞報道

「海産ポリエーテル毒ガンビエロールの完全化学合成」

日経産業新聞 2002年(平成14年)7月19日

日本工業新聞 2002年(平成14年)7月18日日刊工業新聞 2002年(平成14年)7月18日化学工業日報 2002年(平成14年)7月18日

7.結び

CREST 事業に採択された時点で設定した「研究終了時に得られると期待された研究成果」の大半は終了時点で達成されていない。この事実を省みて原因を考察すると以下の2点が挙げられる。

シガトキシンの全合成に関しては、本研究者らまたは他所によりすでに成功例があるも のを用いる合成スキームを設定した箇所で、鍵段階として想定した部分以外での困難が 結果的には大きな障害となった。同様のサイズの天然物全合成における先達の例を見れ ばこれは当然予見すべきことであったのも事実である。中間評価時に本事業のポスドク制 度等が十分生かされていないとの指摘を受けたが、天然物合成に関しては従事希望の 大学院生が多かったこともあり、研究のアクティビティー自体は想定していた規模で進め て来られたと思っている。シガトキシンの合成はすでに東北大学で達成されていることも あり、今後は達成後の構造多様化を考慮したルートを意識して進めている。すでに達成し たガンビエロールとギムノシン-A の合成実績を踏まえて、膜タンパク質との複合体形成に 関する研究部分にて得られる知見をもとに設計された同位体標識物を含むポリエーテル を自由自在に合成することが目標となる。

もう一つの原因としては、本事業のお陰で着手には至ったものの、膜タンパク質の関わ る分子認識を始めとして研究室としては確立していない方法論に挑む場合、研究者が変 わると結果の再現性が得られず論文発表になかなか至らないなどの問題が多々生じるこ とを身にしみて感じた。特に学生の入れ替わりの激しい大学研究室では既報の追試の域 をなかなか出られない場合が多い。これに加えて本研究室所属の教官の交代により(これ に関しても当初から予見すべきであった点である)、研究室としての新規テーマの継続性 を維持することが困難であった。この点で時間的な見通しが甘かったという反省はあるが、 予定しているシガトキシン全合成の達成がなされた暁に研究を一挙に進展させるための 準備はは、他機関での成果も含めて着実に進んできたと思う。従って合成以外の分野に 関しては他機関を含めた各研究室の研究体制において確立しつつあり、上記の問題点 の多くがすでに排除されるに至った結果、今後の研究進展は大幅に加速されると思って いる。

これに加えてポリエーテル群の膜タンパク質への特異的あるいは非特異的親和性を調 べる手段として放射性同位体を用いることで実験の制約を受ける現法に加え、基板に低 分子を固定して表面プラズモン共鳴を適用する方法、同じく基板に調製した膜タンパク質 再構成系をプローブ顕微鏡で解析する方法、さらに再構成リポソーム存在下でのキャピラ リー電気泳動による蛍光標識低分子の泳動度の変化による方法の開発、検証を開始して おり、ポリ環状エーテル多成分集積体の迅速なデータ取得を可能とする予定である。

本研究の目標は全合成で供給されるシガトキシンを用いた構造解析であり、このため前 項に記した一連の手法により得られる情報に基づきポリエーテル認識部位ペプチドモデ ルをデザイン、合成し、固体NMRに使用するための同位体標識を可能とするまでを達成 したい。

さらに得られる情報と確立した有機合成法を用いて膜貫通ペプチドとポリエーテルの双 方に関して構造デザインでのチューニングを進めることで、複合体形成機構の一般的機 構解明を行なうことが現時点での長期的目標である。